cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A212599 Number of functions on n labeled points to themselves (endofunctions) such that the number of cycles of f that have each even size is even.

Original entry on oeis.org

1, 1, 3, 18, 160, 1875, 27126, 466186, 9275064, 209654325, 5307031000, 148720701426, 4570816040352, 152874605142727, 5527634477245440, 214862754390554250, 8934811701563214976, 395788795274021394729, 18606559519007667893376, 925222631836457779380370, 48518852386696450625510400
Offset: 0

Views

Author

Geoffrey Critzer, May 22 2012

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(irem(j, igcd(i, 2))<>0, 0, (i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> add(b(j, j)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 08 2014
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];p=Product[Cosh[t^(2i)/(2i)],{i,1,nn}];Range[0,nn]! CoefficientList[Series[((1+t)/(1-t))^(1/2) p,{x,0,nn}],x]

Formula

E.g.f.: ((1+T(x))/(1-T(x)))^(1/2) * Product_{i>=1} cosh(T(x)^(2*i)/(2*i)) where T(x) is the e.g.f. for A000169.

Extensions

Maple program fixed by Vaclav Kotesovec, Sep 13 2014
Showing 1-1 of 1 results.