A246955 Numbers j for which the symmetric representation of sigma(j) has two parts, each of width one.
3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 79, 82, 83, 86, 89, 92, 94, 97, 101, 103, 106, 107, 109, 113, 116, 118, 122, 124, 127, 131, 134, 136, 137, 139, 142, 146, 148, 149, 151, 152, 157, 158, 163, 164, 166, 167, 172, 173, 178, 179, 181, 184, 188, 191, 193, 194, 197, 199
Offset: 1
Keywords
Examples
We show portions of the first eight columns, 0 <= k <= 7, of the triangle. 0 1 2 3 4 5 6 7 3 5 10 7 14 11 22 44 13 26 52 17 34 68 136 19 38 76 152 23 46 92 184 29 58 116 232 31 62 124 248 37 74 148 296 592 41 82 164 328 656 43 86 172 344 688 47 94 188 376 752 53 106 212 424 848 59 118 236 472 944 61 122 244 488 976 67 134 268 536 1072 2144 71 142 284 568 1136 2272 . . . . . . . . . . . . 127 254 508 1016 2032 4064 131 262 524 1048 2096 4192 8384 137 274 548 1096 2192 4384 8768 . . . . . . . . . . . . . . 251 502 1004 2008 4016 8032 16064 257 514 1028 2056 4112 8224 16448 32896 263 526 1052 2104 4208 8416 16832 33664 Since 2^(2^4) + 1 = 65537 is the 6543rd prime, column k = 15 starts with 2^15*(2^(2^16) + 1) = 2147516416 in row 6542 with 65537 in column k = 0. For an image of the symmetric representations of sigma(m) for all values m <= 137 in the triangle see the link. The first column is the sequence of odd primes, see A065091. The second column is the sequence of twice the primes starting with 10, see A001747. The third column is the sequence of four times the primes starting with 44, see A001749. For related references also see A033676 (largest divisor of n less than or equal to sqrt(n)).
Links
- Hartmut F. W. Hoft, Equivalence proof of sequence and triangle
- Hartmut F. W. Hoft, Image for sigma(n) values
Crossrefs
Programs
-
Mathematica
(* functions path[] and a237270[ ] are defined in A237270 *) atmostOneDiagonalsQ[n_]:=SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], - 1] - path[n - 1], 1]]] (* data *) Select[Range[200], Length[a237270[#]]==2 && atmostOneDiagonalsQ[#]&] (* function for computing triangle in the Example section through row 55 *) TableForm[Table[2^k Prime[n], {n, 2, 56}, {k, 0, Floor[Log[2, Prime[n]] - 1]}], TableDepth->2]
Formula
Formula for the triangle of numbers associated with the sequence:
P(n, k) = 2^k * prime(n) where n >= 2, 0 <= k <= floor(log_2(prime(n)) - 1).
Comments