cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247010 Primes p such that (p-3)/2 and 2*p+3 are both prime.

Original entry on oeis.org

7, 13, 17, 29, 89, 97, 137, 197, 229, 277, 337, 349, 397, 557, 617, 797, 929, 937, 1117, 1217, 1237, 1777, 2129, 2309, 2437, 2477, 2617, 2749, 2857, 2909, 3049, 3109, 3137, 3329, 3389, 4057, 4229, 4289, 4409, 5237, 5297, 5417, 5557, 5717, 5857, 6689
Offset: 1

Views

Author

Vincenzo Librandi, Sep 09 2014

Keywords

Comments

A023204 INTERSECT A089531. After 7, all terms are obviously in A002144.
Conjecture: the sequence is infinite.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(7000) | IsPrime((p-3)div 2) and IsPrime(2*p+3)];
    
  • Mathematica
    Select[Prime[Range[900]], And@@PrimeQ/@{(# - 3)/2, 2 # + 3} &]
  • PARI
    is(n)=isprime(n) && isprime(2*n+3) && isprime((n-3)\2) \\ Charles R Greathouse IV, Sep 09 2014
  • Sage
    def t(i): return 2*i+3
    [t(p) for p in primes(5000) if is_prime(t(p)) and is_prime(t(t(p)))] # Bruno Berselli, Sep 09 2014
    

Formula

a(n) = 2*A023242(n) + 3. [Bruno Berselli, Sep 09 2014]