A247010 Primes p such that (p-3)/2 and 2*p+3 are both prime.
7, 13, 17, 29, 89, 97, 137, 197, 229, 277, 337, 349, 397, 557, 617, 797, 929, 937, 1117, 1217, 1237, 1777, 2129, 2309, 2437, 2477, 2617, 2749, 2857, 2909, 3049, 3109, 3137, 3329, 3389, 4057, 4229, 4289, 4409, 5237, 5297, 5417, 5557, 5717, 5857, 6689
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(7000) | IsPrime((p-3)div 2) and IsPrime(2*p+3)];
-
Mathematica
Select[Prime[Range[900]], And@@PrimeQ/@{(# - 3)/2, 2 # + 3} &]
-
PARI
is(n)=isprime(n) && isprime(2*n+3) && isprime((n-3)\2) \\ Charles R Greathouse IV, Sep 09 2014
-
Sage
def t(i): return 2*i+3 [t(p) for p in primes(5000) if is_prime(t(p)) and is_prime(t(t(p)))] # Bruno Berselli, Sep 09 2014
Formula
a(n) = 2*A023242(n) + 3. [Bruno Berselli, Sep 09 2014]
Comments