cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247017 Decimal expansion of integral_{0..infinity} exp(-x^2)*log(x) dx.

Original entry on oeis.org

8, 7, 0, 0, 5, 7, 7, 2, 6, 7, 2, 8, 3, 1, 5, 5, 0, 6, 7, 3, 4, 6, 4, 8, 7, 9, 9, 5, 3, 6, 0, 8, 7, 4, 3, 7, 5, 0, 8, 1, 0, 7, 3, 3, 3, 6, 2, 5, 9, 4, 0, 0, 5, 3, 7, 8, 8, 5, 8, 3, 3, 8, 5, 1, 9, 6, 5, 2, 5, 8, 4, 2, 7, 1, 4, 4, 2, 9, 5, 4, 0, 0, 8, 3, 7, 2, 1, 9, 5, 0, 7, 8, 7, 7, 1, 9, 4, 2, 9, 6, 9, 1
Offset: 0

Views

Author

Jean-François Alcover, Sep 09 2014

Keywords

Examples

			-0.87005772672831550673464879953608743750810733362594...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5 Euler-Mascheroni constant, p. 31, 1.5.2 Integrals.

Crossrefs

Cf. A020759.

Programs

  • Mathematica
    RealDigits[-(1/4)*Sqrt[Pi]*( EulerGamma + 2*Log[2]), 10, 102] // First
    RealDigits[NIntegrate[Exp[-x^2]Log[x],{x,0,\[Infinity]},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Mar 29 2024 *)
  • PARI
    -(1/4)*sqrt(Pi)*(Euler + 2*log(2)) \\ Michel Marcus, Sep 09 2014

Formula

Equals -(1/4)*sqrt(Pi)*(EulerGamma + 2*log(2)).