A247022 Integers m such that there is exactly one k < m with sigma(k)/k > sigma(m)/m, sigma(m) being the sum of the divisors of m.
3, 8, 18, 30, 72, 168, 420, 3360, 7560, 12600, 20160, 30240, 32760, 50400, 65520, 83160, 131040, 221760, 831600, 1081080, 1663200, 1801800, 2882880, 6486480, 12252240, 24504480, 41081040, 43243200, 68468400, 82162080, 136936800, 205405200, 245044800, 410810400
Offset: 1
Keywords
Examples
sigma(8)/8 is greater than all sigma(x)/x when x < 8 except 6; so 8 is here.
Crossrefs
Programs
-
Maple
M1:= 3/2: M2:= 1: c1:= 1: Res:= NULL: count:= 0: for n from 3 while count < 20 do v:= numtheory:-sigma(n)/n; if v > M1 then M2:= M1; M1:= v; c1:= 1 elif v = M1 then c1:= c1+1 elif c1 = 1 and v >= M2 then M2:= v; Res:= Res,n: count:= count+1 fi od: Res; # Robert Israel, Jul 28 2020
-
PARI
lista(nn) = {my(t=1, x=3/2, y); for(m=3, nn, if((g=sigma(m)/m)>x, t=1; y=x; x=g, if(g==x, t=0, if(g>=y&&t, y=g; print1(m, ", "))))); } \\ Jinyuan Wang, Jul 28 2020
Extensions
a(15)-a(21) from Robert Israel, Jun 08 2018
Corrected and name changed by Robert Israel, Jul 28 2020
More terms from Jinyuan Wang, Jul 28 2020
Comments