A247076 Number of tilings of a 5 X 2n rectangle using 2n pentominoes of shape P.
1, 2, 6, 20, 62, 194, 612, 1922, 6038, 18980, 59646, 187442, 589076, 1851266, 5817894, 18283700, 57459518, 180575906, 567489348, 1783428098, 5604714422, 17613731780, 55354032894, 173959101458, 546694927604, 1718078222594, 5399341807686, 16968314698580
Offset: 0
Keywords
Examples
a(2) = 6: ._______. ._______. ._______. ._______. ._______. ._______. | | | | | | | | | | | | | ._| | | |_. | | ._| ._| |_. |_. | | ._|_. | |_. | ._| |___| | | |___| |_| |_| | | |_| |_| |_| | |_| | |_|_| | | |___| |___| | | | | | | | | | | | | | | ._| | | |_. | |___|___| |___|___| |___|___| |___|___| |_|_____| |_____|_| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
- Index entries for linear recurrences with constant coefficients, signature (2,2,5).
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1, 2, 6, 20][n+1], 2*a(n-1) +2*a(n-2) +5*a(n-3)) end: seq(a(n), n=0..40);
-
Mathematica
Join[{1}, LinearRecurrence[{2, 2, 5}, {2, 6, 20}, 40]] (* Jean-François Alcover, May 29 2018 *)
Formula
G.f.: (x-1)*(x^2+x+1)/(5*x^3+2*x^2+2*x-1).
a(n) = 2*a(n-1)+2*a(n-2)+5*a(n-3) for n>3, a(0)=1; a(1)=2, a(2)=6, a(3)=20.