A247078 Numbers for which the harmonic mean of nontrivial divisors is an integer.
4, 9, 25, 49, 121, 169, 289, 345, 361, 529, 841, 961, 1050, 1369, 1645, 1681, 1849, 2209, 2809, 3481, 3721, 4386, 4489, 5041, 5329, 6241, 6489, 6889, 7921, 8041, 9409, 10201, 10609, 11449, 11881, 12769, 13026, 16129, 17161, 18769, 19321, 22201, 22801
Offset: 1
Keywords
Examples
The divisors of 25 are [1,5,25] and the nontrivial divisors are [5]. The harmonic mean is 1/(1/5)=5. That's the same for all squares of prime numbers. The nontrivial divisors of 345 are [3,5,15,23,69,115] and their harmonic mean is 6/(1/3+1/5+1/15+1/23+1/69+1/115) = 9.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1269 from Daniel Lignon)
Programs
-
Maple
hm:= S -> nops(S)/convert(map(t->1/t,S),`+`): filter:= n -> not isprime(n) and type(hm(numtheory:-divisors(n) minus {1,n}),integer): select(filter, [$2..10^5]); # Robert Israel, Nov 17 2014
-
Mathematica
Select[Range[2,100000],(Not[PrimeQ[#]] && IntegerQ[HarmonicMean[Rest[Most[Divisors[#]]]]])&]
-
PARI
isok(n) = my(d=divisors(n)); (#d >2) && (denominator((#d-2)/sum(i=2, #d-1, 1/d[i])) == 1);
Comments