cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247080 Numbers whose Euler totient is the reverse of the sum of its aliquot parts.

Original entry on oeis.org

2, 735, 7665, 11505, 42630, 64578, 3440409, 11263073973
Offset: 1

Views

Author

Paolo P. Lava, Nov 17 2014

Keywords

Comments

Value of x such that phi(x) = Rev(sigma(x) - x).
a(9) > 2*10^11. - Hiroaki Yamanouchi, Nov 22 2014
a(9) > 10^13. - Giovanni Resta, Aug 26 2019

Examples

			phi(2) = 1 and sigma(2) - 2 = 1.
phi(735) = 336 and sigma(735) - 735 = 633.
phi(7665) = 3456 and sigma(7665) - 7665 = 6543.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do
    y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q) local n; for n from 1 to q do
    if phi(n)=T(sigma(n)-n) then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range[10^6], EulerPhi[#] == FromDigits[Reverse[IntegerDigits[DivisorSigma[1, #] - #]]] &] (* Michael De Vlieger, Jan 29 2015 *)
  • PARI
    rev(n) = subst(Polrev(digits(n)), x, 10);
    isok(n) = rev(sigma(n)-n) == eulerphi(n); \\ Michel Marcus, Jan 29 2015

Extensions

a(7)-a(8) from Hiroaki Yamanouchi, Nov 22 2014