cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247107 a(0) = 0, a(n) = previous term + repunit of length of previous term for n > 0.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21, 32, 43, 54, 65, 76, 87, 98, 109, 220, 331, 442, 553, 664, 775, 886, 997, 1108, 2219, 3330, 4441, 5552, 6663, 7774, 8885, 9996, 11107, 22218, 33329, 44440, 55551, 66662, 77773, 88884, 99995, 111106, 222217, 333328, 444439
Offset: 0

Views

Author

Dhilan Lahoti, Nov 30 2014

Keywords

Examples

			98 = 9*10 + 8 -> 10*10 + 9 = 109.
109 = 1*100 + 0*10 + 9*1 -> 2*100 + 1*10 + 10*1 = 220.
a(42) = 44440 + (10^(floor(log_10(44440))+1)-1) / 9 = 44440 + (10^(4+1)-1) / 9 = 44440 + 99999/9 = 44440 + 11111 = 55551.
		

Crossrefs

Similar to A158699, but with simpler rules.

Programs

  • Mathematica
    a[0]=0; a[n_]:=FromDigits[IntegerDigits[a[n-1]]+1]; Array[a,50,0] (* Stefano Spezia, Sep 19 2024 *)

Formula

a(0) = 0, a(n) = a(n-1) + A002275(A055642(a(n-1))) for n>0.
From Jon E. Schoenfield, Nov 30 2014: (Start)
For n > 1, a(n) = a(n-1) + (10^(floor(log_10(a(n-1))) + 1) - 1) / 9.
For n > 0, a(n) = ((n-1) mod 9 + 1) * (10^D - 1) / 9 + 1 - D, where D = floor((n-1)/9) + 1. (There are exactly D digits in a(n).) (End)
G.f.: -(10*x^10-10*x^9+1)*x/((10*x^9-1)*(x-1)^2). - Alois P. Heinz, Nov 30 2014