A247124 Number of tilings of a 5 X n rectangle using n pentominoes of shapes I, U, X.
1, 1, 1, 2, 3, 8, 14, 21, 37, 63, 122, 221, 374, 656, 1147, 2066, 3699, 6477, 11407, 20099, 35656, 63323, 111775, 197352, 348556, 616560, 1091570, 1929721, 3410509, 6028021, 10658114, 18851012, 33331681, 58927069, 104177155, 184188343, 325686763, 575858676
Offset: 0
Keywords
Examples
a(4) = 3: ._______. ._______. ._______. | | | | | | | ._. | | ._. | | | | | | | | |_| |_| |_| |_| | | | | | | | |_. ._| |_. ._| | | | | | | | | |_| | | |_| | | |_|_|_|_| |_|_____| |_____|_| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentomino
Programs
-
Maple
gf:= -(x-1)^2 *(x^4+x^3+x^2+x+1)^2 / (x^15 +x^13 +x^11 -3*x^10 -2*x^8 -2*x^6 +6*x^5 +x^3 +x-1): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..50);
Formula
G.f.: see Maple program.