cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A039770 Numbers k such that phi(k) is a perfect square.

Original entry on oeis.org

1, 2, 5, 8, 10, 12, 17, 32, 34, 37, 40, 48, 57, 60, 63, 74, 76, 85, 101, 108, 114, 125, 126, 128, 136, 160, 170, 185, 192, 197, 202, 204, 219, 240, 250, 257, 273, 285, 292, 296, 304, 315, 364, 370, 380, 394, 401, 432, 438, 444, 451, 456, 468, 489, 504, 505
Offset: 1

Views

Author

Keywords

Comments

A004171 is a subsequence because phi(2^(2k+1)) = (2^k)^2. - Enrique Pérez Herrero, Aug 25 2011
Subsequence of primes is A002496 since in this case phi(k^2+1) = k^2. - Bernard Schott, Mar 06 2023
Products of distinct terms of A002496 form a subsequence. - Chai Wah Wu, Aug 22 2025

Examples

			phi(34) = 16 = 4*4.
		

References

  • D. M. Burton, Elementary Number Theory, Allyn and Bacon Inc., Boston MA, 1976, p. 141.

Crossrefs

Cf. A000010, A007614. A062732 gives the squares. A306882 (squares not totient).

Programs

  • Maple
    with(numtheory); isA039770 := proc (n) return issqr(phi(n)) end proc; seq(`if`(isA039770(n), n, NULL), n = 1 .. 505); # Nathaniel Johnston, Oct 09 2013
  • Mathematica
    Select[ Range[ 600 ], IntegerQ[ Sqrt[ EulerPhi[ # ] ] ]& ]
  • PARI
    for(n=1, 120, if (issquare(eulerphi(n)), print1(n, ", ")))
    
  • Python
    from math import isqrt
    from sympy import totient as phi
    def ok(n): return isqrt(p:=phi(n))**2 == p
    print([k for k in range(1, 506) if ok(k)]) # Michael S. Branicky, Aug 17 2025

Formula

a(n) seems to be asymptotic to c*n^(3/2) with 1 < c < 1.3. - Benoit Cloitre, Sep 08 2002
Banks, Friedlander, Pomerance, and Shparlinski show that a(n) = O(n^1.421). - Charles R Greathouse IV, Aug 24 2009

A324746 Numbers k with exactly two distinct prime factors and such that phi(k) is square, when k = p^(2s+1) * q^(2t+1) with p < q primes, s,t >= 0.

Original entry on oeis.org

10, 34, 40, 57, 74, 85, 136, 160, 185, 202, 219, 250, 296, 394, 451, 489, 505, 513, 514, 544, 629, 640, 679, 802, 808, 985, 1000, 1057, 1154, 1184, 1285, 1354, 1387, 1417, 1576, 1717, 1971, 2005, 2047, 2056, 2125, 2176, 2509, 2560, 2594, 2649, 2761, 2885, 3097
Offset: 1

Views

Author

Bernard Schott, Mar 12 2019

Keywords

Comments

An integer belongs to this sequence iff (p-1)*(q-1) = m^2.
This is the first subsequence of A324745, the second one is A324747.
Some values of (k,p,q,m): (10,2,5,2), (34,2,17,4), (40,2,5,4), (57,3,19,4), (74,2,37,6), (85,5,17,8).
The primitive terms of this sequence are the products p * q, with p < q which satisfy (p-1)*(q-1) = m^2; the first few are 10, 34, 57, 74, 85, 185. These primitives form exactly the sequence A247129. Then the integers (p*q) * p^2 and (p*q) * q^2 are new terms of the general sequence.
The number of semiprimes p*q whose totient is a square equal to (2*n)^2 can be found in A306722.

Examples

			629 = 17 * 37 and phi(629) = 16 * 36 = 9^2.
808 = 2^3 * 101 and phi(808) = (2^1 * 101^0 * 10)^2 = 20^2.
		

Crossrefs

Cf. A306722, A247129 (subsequence of primitives).

Programs

  • Maple
    N:= 10^4:
    Res:= {}:
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 >= N then break fi;
      F:= ifactors(p-1)[2];
      dm:= mul(t[1]^ceil(t[2]/2),t=F);
      for j from (p-1)/dm+1 do
        q:= (j*dm)^2/(p-1) + 1;
        if q > N then break fi;
        if isprime(q) then Res:= Res union {seq(seq(
          p^(2*s+1)*q^(2*t+1),t=0..floor((log[q](N/p^(2*s+1))-1)/2)),
          s=0..floor((log[p](N/q)-1)/2))} fi
      od
    od:
    sort(convert(Res,list)); # Robert Israel, Mar 22 2019
  • Mathematica
    Select[Range[6, 3100], And[PrimeNu@ # == 2, IntegerQ@ Sqrt@ EulerPhi@ #, IntegerQ@ Sqrt[Times @@ (FactorInteger[#][[All, 1]] - 1 )]] &] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    isok(k) = {if (issquare(eulerphi(k)), my(expo = factor(k)[,2]); if ((#expo == 2)&& (expo[1]%2) == (expo[2]%2), return (1)););} \\ Michel Marcus, Mar 18 2019

Formula

phi(p*q) = (p-1)*(q-1) = m^2 for primitive terms.
phi(k) = (p^s * q^t * m)^2 with k as in the name of this sequence.

A306722 Number of pairs of primes (p,q), p < q, which are a solution of the Diophantine equation (p-1)*(q-1) = (2n)^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 0, 3, 1, 1, 1, 1, 0, 3, 0, 3, 1, 1, 0, 3, 1, 1, 4, 3, 0, 3, 0, 1, 4, 0, 1, 3, 1, 0, 0, 3, 0, 3, 0, 1, 4, 0, 1, 3, 0, 1, 0, 1, 0, 2, 1, 2, 0, 2, 0, 5, 0, 1, 4, 0, 1, 4, 1, 0, 0, 4, 0, 6, 1, 1, 4, 0, 0, 5, 0, 4, 1
Offset: 1

Views

Author

Bernard Schott, Mar 06 2019

Keywords

Comments

a(n) is also the number of semiprimes p*q whose totient is a square (A247129) and equal to (2*n)^2.
From Robert G. Wilson v, Mar 30 2019, Mar 30 2019: (Start)
First occurrence of k=1,2,3,...: 1, 3, 10, 27, 60, 72, 120, 180, 270, 480, 252, 1155, 720, 792, 1260, 630, ..., . = A307245.
Start of table:
a(k_i) = n:
\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
n\
0 11 17 19 23 29 31 34 38 39 41 43 46 49 51 53 ...
1 1 2 4 5 7 8 9 13 14 15 16 21 22 25 26 ...
2 3 6 54 56 58 87 100 115 116 123 138 148 160 170 176 ...
3 10 12 18 20 24 28 30 36 40 42 48 84 88 99 144 ...
4 27 33 45 63 66 70 75 80 112 126 135 153 156 162 165 ...
5 60 78 90 102 140 168 200 260 264 285 288 315 378 408 432 ...
6 72 105 108 130 150 306 348 357 450 495 528 560 672 696 708 ...
7 120 132 240 297 312 330 390 588 750 882 980 1140 1176 1190 1215 ...
8 180 198 210 280 396 468 540 612 648 700 810 910 945 960 1020 ...
9 270 420 660 858 918 990 1248 1620 1782 1920 2088 2184 2352 2376 2688 ...
... (End).
If n is a prime <> 3, then a(n) = 1 if n is in A052291 and 0 otherwise, and a(n^2) = 1 if 2*n+1 and 2*n^3+1 are primes and 0 otherwise. - Robert Israel, Apr 04 2019

Examples

			a(2) = 1 because (2*2)^2 = (2-1) * (17-1), also, phi(2*17) = 4^2.
a(3) = 2 because (2*3)^2 = (2-1) * (37-1) = (3-1) * (19-1), also, phi(2*37) = phi(3*19) = 6^2.
a(11) = 0  because (2*11)^2 can't be written as (p-1)*(q-1) with p < q.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local w;
      w:= (2*n)^2;
      nops(select(t -> t < 2*n and isprime(t+1) and isprime(w/t + 1),  numtheory:-divisors(w)))
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 04 2019
  • Mathematica
    f[n_] := Length@ Select[ Divisors[ 4n^2], # < 2n && PrimeQ[# + 1] && PrimeQ[ 4n^2/# + 1] &]; Array[f, 81] (* Robert G. Wilson v, Mar 30 2019 *)
  • PARI
    a(n) = {my(nb = 0, nn = 4*n^2); fordiv(nn, d, if (d == 2*n, break); if (isprime(d+1) && isprime(nn/d+1), nb++);); nb;} \\ Michel Marcus, Mar 06 2019

A307245 First occurrence of n in A306722.

Original entry on oeis.org

11, 1, 3, 10, 27, 60, 72, 120, 180, 270, 480, 252, 1155, 720, 792, 1260, 630, 1050, 4590, 1680, 1320, 7980, 3780, 4680, 5880, 5040, 5460, 4620, 9180, 10080, 10710, 6930, 9240, 7560, 21420, 20790, 27300, 52080, 15120, 13860, 48510, 23940, 62370, 46200, 16380, 30030
Offset: 0

Views

Author

Keywords

Comments

Record values: 11, 27, 60, 72, 120, 180, 270, 480, 1155, 1260, 4590, 7980, 9180, 10080, 10710, 21420, 27300, 52080, 62370, 191520, 207480, 214200, 428400, ..., .

Examples

			a(0) = 11  because (2*11)^2 = 484 is the smaller integer that can't be written as (p-1)*(q-1) with p,q primes, p < q.
a(3) = 10 because (2*10)^2 = 400 is the smaller integer such that the Diophantine equation (p-1)*(q-1) = 400 has three solutions: (p,q) = (2,401) = (5,101) = (11,41); also, phi(2*401) = phi(5*101) = phi(11*41) = 20^2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ Select[ Divisors[ 4n^2], # < 2n && PrimeQ[# +1] && PrimeQ[4n^2/# +1] &]; t[_] := 0; k = 1; While[k < 100000, a = f@k; If[t[a] == 0, t[a] = k]; k++]; t@# & /@ Range[0, 50]
Showing 1-4 of 4 results.