A247145 Composite numbers such that the product of the number's proper divisors is divisible by the sum of the number's proper divisors.
6, 12, 24, 28, 40, 42, 56, 60, 90, 120, 140, 153, 216, 234, 270, 290, 360, 440, 496, 522, 568, 585, 588, 672, 708, 819, 924, 984, 992, 1001, 1170, 1316, 1320, 1365, 1431, 1780, 2016, 2184, 2295, 2296, 2299, 2464, 2466, 2655, 2832, 3100, 3344, 3420, 3627, 3724, 3948, 4320, 4336, 4416, 4680
Offset: 1
Examples
12 is on the list because the proper divisors of 12 are [1,2,3,4,6]. The product of these numbers is 144. Their sum is 16. 144 is divisible by 16.
Links
- Robert Israel, Table of n, a(n) for n = 1..1203
Crossrefs
Cf. A145551.
Programs
-
Maple
filter:= proc(n) local d,p,s; if isprime(n) then return false fi; d:= numtheory:-divisors(n) minus {n}; convert(d,`*`) mod convert(d,`+`) = 0; end proc: select(filter, [$2..10000]); # Robert Israel, Dec 16 2014
-
Mathematica
a247145[n_Integer] := Select[Select[Range[n], CompositeQ[#] &], Divisible[Times @@ Most@Divisors[#], Plus @@ Most@Divisors[#]] &]; a247145[4680] (* Michael De Vlieger, Dec 15 2014 *) fQ[n_Integer] := Block[{d = Most@Divisors@n}, Mod[Times @@ d, Plus @@ d] == 0]; Select[Range@4680, ! PrimeQ@# && fQ@# &] (* Michael De Vlieger, Dec 19 2014, suggested by Robert G. Wilson v *)
-
PARI
forcomposite(n=1,10^3,d=divisors(n);p=prod(i=1,#d-1,d[i]);if(!(p%(sigma(n)-n)),print1(n,", "))) \\ Derek Orr, Nov 27 2014
-
Python
from functools import reduce from operator import mul def divs(n): for i in range(1, int(n / 2 + 1)): if n % i == 0: yield i yield n g = [] for a in range(2, 100): q = list(divs(a))[0:-1] if reduce(mul, q, 1) % sum(q) == 0 and len(q) != 1: g.append(a) print(g)
Extensions
More terms from Derek Orr, Dec 03 2014
Comments