cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247145 Composite numbers such that the product of the number's proper divisors is divisible by the sum of the number's proper divisors.

Original entry on oeis.org

6, 12, 24, 28, 40, 42, 56, 60, 90, 120, 140, 153, 216, 234, 270, 290, 360, 440, 496, 522, 568, 585, 588, 672, 708, 819, 924, 984, 992, 1001, 1170, 1316, 1320, 1365, 1431, 1780, 2016, 2184, 2295, 2296, 2299, 2464, 2466, 2655, 2832, 3100, 3344, 3420, 3627, 3724, 3948, 4320, 4336, 4416, 4680
Offset: 1

Views

Author

David Consiglio, Jr., Nov 20 2014

Keywords

Comments

Equal to the indices of the zero terms that correspond to composite numbers in A191906.

Examples

			12 is on the list because the proper divisors of 12 are [1,2,3,4,6]. The product of these numbers is 144. Their sum is 16. 144 is divisible by 16.
		

Crossrefs

Cf. A145551.

Programs

  • Maple
    filter:= proc(n)
           local d,p,s;
         if isprime(n) then return false fi;
         d:= numtheory:-divisors(n) minus {n};
         convert(d,`*`) mod convert(d,`+`) = 0;
    end proc:
    select(filter, [$2..10000]); # Robert Israel, Dec 16 2014
  • Mathematica
    a247145[n_Integer] :=
    Select[Select[Range[n], CompositeQ[#] &],
    Divisible[Times @@ Most@Divisors[#], Plus @@ Most@Divisors[#]] &]; a247145[4680] (* Michael De Vlieger, Dec 15 2014 *)
    fQ[n_Integer] := Block[{d = Most@Divisors@n}, Mod[Times @@ d, Plus @@ d] == 0]; Select[Range@4680, ! PrimeQ@# && fQ@# &] (* Michael De Vlieger, Dec 19 2014, suggested by Robert G. Wilson v *)
  • PARI
    forcomposite(n=1,10^3,d=divisors(n);p=prod(i=1,#d-1,d[i]);if(!(p%(sigma(n)-n)),print1(n,", "))) \\ Derek Orr, Nov 27 2014
  • Python
    from functools import reduce
    from operator import mul
    def divs(n):
        for i in range(1, int(n / 2 + 1)):
            if n % i == 0:
                yield i
        yield n
    g = []
    for a in range(2, 100):
        q = list(divs(a))[0:-1]
        if reduce(mul, q, 1) % sum(q) == 0 and len(q) != 1:
            g.append(a)
    print(g)
    

Extensions

More terms from Derek Orr, Dec 03 2014