A247146 As a binary numeral, the bit 2^(m-1) of a(n) is 1 iff m is a proper divisor of n.
0, 1, 1, 3, 1, 7, 1, 11, 5, 19, 1, 47, 1, 67, 21, 139, 1, 295, 1, 539, 69, 1027, 1, 2223, 17, 4099, 261, 8267, 1, 16951, 1, 32907, 1029, 65539, 81, 133423, 1, 262147, 4101, 524955, 1, 1056871, 1, 2098187, 16661, 4194307, 1, 8423599, 65, 16777747, 65541
Offset: 1
Keywords
Programs
-
Mathematica
With[{n=Range[100]},(1/2) ((Total/@(2^Divisors[n])) - 2^n)]
-
PARI
a(n) = sumdiv(n, k, 2^(k-1)) - 2^(n-1); \\ Michel Marcus, Nov 25 2014
-
Python
from sympy import divisors def A247146(n): return sum(1<
Chai Wah Wu, Jul 15 2022
Formula
a(n) = A034729(n) - 2^(n-1). - Michel Marcus, Nov 22 2014
Comments