A247147 Numbers k such that 3*k-4 and 2^k-1 are prime.
2, 3, 5, 7, 17, 19, 31, 61, 89, 107, 521, 1279, 9689, 9941, 21701, 23209, 216091, 13466917, 30402457, 57885161
Offset: 1
Links
- Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, arXiv:math/0404188 [math.NT], 2004-2007; Annals of Mathematics, 167 (2008), pp. 481-547.
Programs
-
Magma
[n: n in [0..10000] | IsPrime(3*n-4) and IsPrime(2^n-1)];
-
Mathematica
Select[Range[10000], PrimeQ[2^# - 1] && PrimeQ[3 # - 4] &]
-
Python
from sympy import isprime from itertools import count, islice def agen(startk=1): for k in count(startk): if isprime(3*k-4) and isprime(2**k-1): yield k print(list(islice(agen(), 12))) # Michael S. Branicky, Jul 31 2022
Extensions
a(20) using A000043 from Michael S. Branicky, Jul 31 2022
Comments