cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247171 G.f.: (2*x^2+4*x+3)/((2*x+2)*sqrt(-4*x^3-4*x^2+1))-1/(2*x+2).

Original entry on oeis.org

1, 1, 3, 4, 11, 21, 48, 106, 235, 535, 1203, 2751, 6272, 14392, 33078, 76224, 176043, 407253, 943833, 2190397, 5090371, 11843689, 27586793, 64320191, 150102784, 350586496, 819477792, 1916861350, 4486760870, 10508582130, 24626700888
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 22 2014

Keywords

Crossrefs

Cf. A007477.

Programs

  • Mathematica
    CoefficientList[Series[(2 x^2 + 4 x + 3) / ((2 x + 2) Sqrt[-4 x^3 - 4 x^2 + 1]) - 1 / (2 x + 2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 22 2014 *)
  • Maxima
    a(n):=if n=0 then 1 else n*sum((binomial(2*k,n-k)*binomial(n-k-1,k-1))/k,k,1,n);

Formula

a(n) = n*Sum_{k=1..n} (binomial(2*k,n-k)*binomial(n-k-1,k-1))/k, n>0, a(0)=1.
D-finite with recurrence: 3*n*a(n) +(7*n-8)*a(n-1) +2*(-3*n-2)*a(n-2) +2*(-19*n+35)*a(n-3) +2*(-26*n+81)*a(n-4) +4*(-8*n+35)*a(n-5) +4*(-2*n+11)*a(n-6)=0. - R. J. Mathar, Jan 25 2020