A247174 Numbers k such that phi(k) = phi(k+1) and simultaneously Product_{d|k} phi(d) = Product_{d|(k+1)} phi(d) where phi(x) = Euler totient function (A000010).
1, 3, 15, 255, 65535, 2200694, 2619705, 6372794, 40588485, 76466985, 81591194, 118018094, 206569605, 470542485, 525644385, 726638834, 791937614, 971122514, 991172805
Offset: 1
Keywords
Examples
15 is in the sequence because phi(15) = phi(16) = 8 and simultaneously Product_{d|15} phi(d) = Product_{d|(15+1)} phi(d) = 64.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..213 (terms below 10^13, calculated using the b-file at A001274)
Programs
-
Magma
[n: n in [1..100000] | (&*[EulerPhi(d): d in Divisors(n)]) eq (&*[EulerPhi(d): d in Divisors(n+1)]) and EulerPhi(n) eq EulerPhi(n+1)]
-
Magma
[n: n in [A248795(n)] | EulerPhi(n) eq EulerPhi(n+1)]
-
Mathematica
a247174[n_Integer] := Module[{a001274, a248795}, a001274[m_] := Select[Range[m], EulerPhi[#] == EulerPhi[# + 1] &]; a248795[m_] := Select[Range[m], Product[EulerPhi[i], {i, Divisors[#]}] == Product[EulerPhi[j], {j, Divisors[# + 1]}] &]; Intersection[a001274[n], a248795[n]]] (* Michael De Vlieger, Dec 01 2014 *)
Extensions
a(6)-a(19) using A248795 by Jaroslav Krizek, Nov 25 2014
Comments