cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247174 Numbers k such that phi(k) = phi(k+1) and simultaneously Product_{d|k} phi(d) = Product_{d|(k+1)} phi(d) where phi(x) = Euler totient function (A000010).

Original entry on oeis.org

1, 3, 15, 255, 65535, 2200694, 2619705, 6372794, 40588485, 76466985, 81591194, 118018094, 206569605, 470542485, 525644385, 726638834, 791937614, 971122514, 991172805
Offset: 1

Views

Author

Jaroslav Krizek, Nov 22 2014

Keywords

Comments

Numbers n such that A000010(n) = A000010(n+1) and simultaneously A029940(n) = A029940(n+1).
4294967295 is also a term of this sequence.
Intersection of A001274 and A248795.

Examples

			15 is in the sequence because phi(15) = phi(16) = 8 and simultaneously Product_{d|15} phi(d) = Product_{d|(15+1)} phi(d) = 64.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] |  (&*[EulerPhi(d): d in Divisors(n)]) eq (&*[EulerPhi(d): d in Divisors(n+1)]) and EulerPhi(n) eq EulerPhi(n+1)]
    
  • Magma
    [n: n in [A248795(n)] | EulerPhi(n) eq EulerPhi(n+1)]
  • Mathematica
    a247174[n_Integer] := Module[{a001274, a248795},
      a001274[m_] := Select[Range[m], EulerPhi[#] == EulerPhi[# + 1] &];
      a248795[m_] :=
       Select[Range[m],
        Product[EulerPhi[i], {i, Divisors[#]}] ==
          Product[EulerPhi[j], {j, Divisors[# + 1]}] &];
    Intersection[a001274[n], a248795[n]]] (* Michael De Vlieger, Dec 01 2014 *)

Extensions

a(6)-a(19) using A248795 by Jaroslav Krizek, Nov 25 2014