cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247200 Odd numbers which are neither of the form p*2^m + 1 nor of the form p*2^m - 1 with p prime.

Original entry on oeis.org

71, 99, 101, 109, 131, 139, 155, 169, 181, 197, 199, 221, 229, 239, 241, 251, 259, 265, 281, 287, 289, 307, 309, 311, 323, 337, 339, 341, 349, 365, 371, 373, 379, 391, 401, 407, 409, 419, 431, 433, 439, 441, 443, 461, 469, 475, 485, 491, 493, 499, 505, 517, 519
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 18 2014

Keywords

Comments

For each n, the sequence has a set of n consecutive odd numbers.
For any n, the number 2*A140077(n) + 1 is in the sequence.
Every number of the form S*2^n + 1 or R*2^n - 1 with n > 0, where S is a composite SierpiƄski number and R is a composite Riesel number, is in the sequence.
Odd numbers n such that (n-1)/A007814(n-1) and (n+1)/A007814(n+1) are composite. - Robert Israel, Nov 19 2014

Crossrefs

Programs

  • Magma
    lst1:=[]; lst2:=[]; r:=519; t:=Floor(Log(2, r))-1; for m in [0..t] do e:=Floor(r/2^m); for p in [2..e] do if IsPrime(p) then a:=p*2^m-1; b:=p*2^m+1; if not a in lst1 then Append(~lst1, a); end if; if not b in lst1 then Append(~lst1, b); end if; end if; end for; end for; for n in [3..r by 2] do if not n in lst1 then Append(~lst2, n); end if; end for; lst2;
    
  • Maple
    filter:= proc(n)
      local m1,m2;
      m1:= padic[ordp](n-1,2);
      if n-1 = 2^m1 then return false fi;
      m2:= padic[ordp](n+1,2);
      n+1 <> 2^m2 and not isprime((n-1)/2^m1) and not isprime((n+1)/2^m2);
    end proc:
    select(filter, [seq(2*i+1,i=0..1000)]); # Robert Israel, Nov 19 2014
  • PARI
    b=0; forstep(n=1, 519, 2, c=2^floor(log(n)/log(2)); a=b; b=(n+1)/gcd(n+1, c); if(a>8&&!isprime(a)&&!isprime(b), print1(n, ", ")));