cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A251072 Number A(n,k) of tilings of a 3k X n rectangle using 3n k-ominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 41, 1, 1, 1, 1, 1, 19, 281, 1, 1, 1, 1, 1, 1, 57, 1183, 1, 1, 1, 1, 1, 1, 26, 121, 6728, 1, 1, 1, 1, 1, 1, 1, 75, 783, 31529, 1, 1, 1, 1, 1, 1, 1, 34, 154, 2861, 167089, 1, 1, 1, 1, 1, 1, 1, 1, 95, 269, 8133, 817991, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 29 2014

Keywords

Comments

A(n,n) = A034856(n+2) for n>=2.

Examples

			Square array A(n,k) begins:
  1, 1,      1,    1,    1,   1,   1,   1,  1, ...
  1, 1,      1,    1,    1,   1,   1,   1,  1, ...
  1, 1,     13,    1,    1,   1,   1,   1,  1, ...
  1, 1,     41,   19,    1,   1,   1,   1,  1, ...
  1, 1,    281,   57,   26,   1,   1,   1,  1, ...
  1, 1,   1183,  121,   75,  34,   1,   1,  1, ...
  1, 1,   6728,  783,  154,  95,  43,   1,  1, ...
  1, 1,  31529, 2861,  269, 190, 117,  53,  1, ...
  1, 1, 167089, 8133, 1732, 325, 229, 141, 64, ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; local d, k; d:= nops(l)/3;
          if n=0 then 1
        elif min(l[])>0 then (m->b(n-m, map(x->x-m, l)))(min(l[]))
        else for k while l[k]>0 do od;
             `if`(n2*d+1 or max(l[k..k+d-1][])>0, 0,
              b(n, [l[1..k-1][], 1$d, l[k+d..3*d][]]))
          fi
        end:
    A:= (n, k)-> `if`(k=0, 1, b(n, [0$3*k])):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{d = Length[l]/3, k}, Which[n == 0, 1,  Min[l] > 0, Function[{m}, b[n-m, l-m]][Min[l]], True, For[k=1, l[[k]] > 0 , k++]; If[n d]]] + If[d == 1 || k > 2d + 1 || Max[l[[k ;; k + d - 1]]] > 0,  0,  b[n, Join[l[[1 ;; k-1]], Array[1&, d],  l[[k+d ;; 3*d]]]]]]]; A[n_, k_] := If[k == 0, 1, b[n, Array[0&, 3k]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)

A247117 Number of tilings of a 10 X n rectangle using 2n pentominoes of shape I.

Original entry on oeis.org

1, 1, 1, 1, 1, 8, 17, 28, 41, 56, 144, 317, 609, 1060, 1716, 3324, 6713, 13188, 24624, 43620, 80464, 153645, 296025, 562097, 1037921, 1920661, 3600832, 6820873, 12920804, 24211457, 45173688, 84493668, 158848825, 299451277, 562923960, 1055117520, 1976475968
Offset: 0

Views

Author

Alois P. Heinz, Nov 19 2014

Keywords

Crossrefs

Cf. A174249, A233427, A003520 (5 X n), A247218 (15 X n).
Column k=5 of A250662.

Programs

  • Maple
    gf:= -(x^10+x^8-x^6-2*x^5-x^4-x^3+1) *(x-1)^4 *(x^4+x^3+x^2+x+1)^4 / (x^35 +x^33 -2*x^31 -7*x^30 -2*x^29 -6*x^28 +x^27 +9*x^26 +22*x^25 +8*x^24 +15*x^23 -4*x^22 -15*x^21 -39*x^20 -12*x^19 -20*x^18 +6*x^17 +10*x^16 +45*x^15 +8*x^14 +19*x^13 -4*x^12 -4*x^11 -33*x^10 -6*x^9 -10*x^8 +x^7 -3*x^6 +12*x^5 +x^3 +x-1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..50);

Formula

G.f.: see Maple program.
Showing 1-2 of 2 results.