cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A233427 Number A(n,k) of tilings of a k X n rectangle using pentominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 5, 0, 0, 5, 0, 1, 1, 0, 0, 56, 0, 56, 0, 0, 1, 1, 0, 0, 0, 501, 501, 0, 0, 0, 1, 1, 0, 0, 0, 0, 4006, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 27950, 27950, 0, 0, 0, 1, 1, 1, 0, 45, 0, 0, 214689, 0, 214689, 0, 0, 45, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 09 2013

Keywords

Examples

			A(5,2) = A(2,5) = 5:
  ._________. ._________. ._________. ._________. ._________.
  |_________| | ._____| | | |_____. | |   ._|   | |   |_.   |
  |_________| |_|_______| |_______|_| |___|_____| |_____|___|.
Square array A(n,k) begins:
  1, 1,  1,    1,      1,         1,          1, ...
  1, 0,  0,    0,      0,         1,          0, ...
  1, 0,  0,    0,      0,         5,          0, ...
  1, 0,  0,    0,      0,        56,          0, ...
  1, 0,  0,    0,      0,       501,          0, ...
  1, 1,  5,   56,    501,      4006,      27950, ...
  1, 0,  0,    0,      0,     27950,          0, ...
  1, 0,  0,    0,      0,    214689,          0, ...
  1, 0,  0,    0,      0,   1696781,          0, ...
  1, 0,  0,    0,      0,  13205354,          0, ...
  1, 1, 45, 7670, 890989, 101698212, 7845888732, ...
  ...
		

Crossrefs

Formula

A(n,k) = 0 <=> n*k mod 5 > 0.

A250662 Number A(n,k) of tilings of a 2k X n rectangle using 2n k-ominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 6, 36, 1, 1, 1, 1, 1, 1, 13, 95, 1, 1, 1, 1, 1, 1, 7, 22, 281, 1, 1, 1, 1, 1, 1, 1, 15, 64, 781, 1, 1, 1, 1, 1, 1, 1, 8, 25, 155, 2245, 1, 1, 1, 1, 1, 1, 1, 1, 17, 37, 321, 6336, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,   1,   1,  1,  1,  1,  1, ...
  1, 1,    1,   1,   1,  1,  1,  1,  1, ...
  1, 1,    5,   1,   1,  1,  1,  1,  1, ...
  1, 1,   11,   6,   1,  1,  1,  1,  1, ...
  1, 1,   36,  13,   7,  1,  1,  1,  1, ...
  1, 1,   95,  22,  15,  8,  1,  1,  1, ...
  1, 1,  281,  64,  25, 17,  9,  1,  1, ...
  1, 1,  781, 155,  37, 28, 19, 10,  1, ...
  1, 1, 2245, 321, 100, 41, 31, 21, 11, ...
		

Crossrefs

Columns k=0+1,2-10 give: A000012, A005178(n+1), A236577, A236582, A247117, A250663, A250664, A250665, A250666, A250667.
Cf. A251072.

Programs

  • Maple
    b:= proc(n, l) option remember; local d, k; d:= nops(l)/2;
          if n=0 then 1
        elif min(l[])>0 then (m->b(n-m, map(x->x-m, l)))(min(l[]))
        else for k while l[k]>0 do od;
             `if`(nd+1 or max(l[k..k+d-1][])>0, 0,
              b(n, [l[1..k-1][],1$d,l[k+d..2*d][]]))
          fi
        end:
    A:= (n, k)-> `if`(k=0, 1, b(n, [0$2*k])):
    seq(seq(A(n,d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, k}, Which[n == 0, 1, Min[l] > 0 , Function[{m}, b[n-m, l-m]][Min[l]], True, For[k=1, l[[k]] > 0, k++]; If[n d]]] + If[d == 1 || k > d+1 || Max[l[[k ;; k+d-1]]] > 0, 0, b[n, Join[l[[1 ;; k-1]], Array[1&, d], l[[k+d ;; 2*d]]]]]]]; A[n_, k_] := If[k == 0, 1, b[n, Array[0&, 2k]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)

A247218 Number of tilings of a 15 X n rectangle using 3n pentominoes of shape I.

Original entry on oeis.org

1, 1, 1, 1, 1, 34, 95, 190, 325, 506, 3324, 10353, 25607, 55346, 108756, 389216, 1208901, 3281686, 8006108, 17950204, 51430928, 150609259, 419540401, 1090827453, 2651884943, 7077981621, 19691707908, 54499735145, 145671654672, 371632691473, 976543067070
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2014

Keywords

Crossrefs

Column k=5 of A251072.
Showing 1-3 of 3 results.