A005178
Number of domino tilings of 4 X (n-1) board.
Original entry on oeis.org
0, 1, 1, 5, 11, 36, 95, 281, 781, 2245, 6336, 18061, 51205, 145601, 413351, 1174500, 3335651, 9475901, 26915305, 76455961, 217172736, 616891945, 1752296281, 4977472781, 14138673395, 40161441636, 114079985111, 324048393905
Offset: 0
For n=2 the graph is
o-o-o-o
and there is one perfect tiling:
o-o o-o
For n=3 the graph is
o-o-o-o
| | | |
o-o-o-o
and there are five perfect tilings:
o o o o
| | | |
o o o o
two like:
o o o-o
| | ...
o o o-o
and this
o-o o-o
.......
o-o o-o
and this
o o-o o
| ... |
o o-o o
a(n+1)=r(n)-r(n-2), r(n)=if n=0 then 1 else sum(sum(binomial(k,j)*sum(binomial(j,i-j)*5^(i-j)*binomial(k-j,n-i-3*(k-j))*(-1)^(n-i-3*(k-j)),i,j,n-k+j),j,0,k),k,1,n), n>1. - _Vladimir Kruchinin_, Sep 08 2010
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics I, p. 292.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Steve Butler, Jason Ekstrand, and Steven Osborne, Counting Tilings by Taking Walks in a Graph, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), see page 158.
- Curtis Cooper and Robert E. Kennedy, Problem B-735: Soln 1, Problem B-735: Soln 2, Square Root of a Recurrence, The Fibonacci Quarterly, 32(2):185-186, May 1994, and 32(4):374-375, Aug 1994.
- F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
- F. Faase, Counting Hamiltonian cycles in product graphs
- F. Faase, Results from the counting program
- Vladimir Victorovich Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Simone Rinaldi and D. G. Rogers, Indecomposability: polyominoes and polyomino tilings, The Mathematical Gazette 92.524 (2008): 193-204.
- David Singmaster, Letter to N. J. A. Sloane, Oct 3 1982.
- Thotsaporn "Aek" Thanatipanonda, Statistics of Domino Tilings on a Rectangular Board, Fibonacci Quart. 57 (2019), no. 5, 145-153. See p. 151.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Li Zhou, Northwestern University Math Problem Solving Group, Christopher Carl Heckman and Jerry Minkus, Tiling 4-Rowed Rectangles with Dominoes: 11187, The American Mathematical Monthly 114 (2007): 554-556.
- Index to divisibility sequences
- Index entries for sequences related to dominoes
- Index entries for linear recurrences with constant coefficients, signature (1,5,1,-1).
-
a[0]:=1: a[1]:=1: a[2]:=5: a[3]:=11: for n from 4 to 26 do a[n]:=a[n-1]+5*a[n-2]+a[n-3]-a[n-4] od: seq(a[n],n=0..26); # Emeric Deutsch, Oct 16 2006
A005178:=-(-1-4*z-z**2+z**3)/(1-z-5*z**2-z**3+z**4) # conjectured (correctly) by Simon Plouffe in his 1992 dissertation; gives sequence apart from an initial 1
-
CoefficientList[Series[x(1-x^2)/(1-x-5x^2-x^3+x^4), {x,0,30}], x] (* T. D. Noe, Dec 22 2008 *)
LinearRecurrence[{1, 5, 1, -1}, {0, 1, 1, 5}, 28] (* Robert G. Wilson v, Aug 08 2011 *)
a[0] = 0; a[n_] := Product[2(2+Cos[2j Pi/5]+Cos[2k Pi/n]), {k, 1, (n-1)/2}, {j, 1, 2}] // Round;
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 20 2018 *)
-
r(n):=if n=0 then 1 else sum(sum(binomial(k,j)*sum(binomial(j,i-j)*5^(i-j)*binomial(k-j,n-i-3*(k-j))*(-1)^(n-i-3*(k-j)),i,j,n-k+j),j,0,k),k,1,n); a(n):=r(n)-r(n-2); /* Vladimir Kruchinin, Sep 08 2010 */
Amalgamated with (former)
A003692, Dec 30 1995
Name changed and 0 prepended by
T. D. Noe, Dec 22 2008
A251072
Number A(n,k) of tilings of a 3k X n rectangle using 3n k-ominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 41, 1, 1, 1, 1, 1, 19, 281, 1, 1, 1, 1, 1, 1, 57, 1183, 1, 1, 1, 1, 1, 1, 26, 121, 6728, 1, 1, 1, 1, 1, 1, 1, 75, 783, 31529, 1, 1, 1, 1, 1, 1, 1, 34, 154, 2861, 167089, 1, 1, 1, 1, 1, 1, 1, 1, 95, 269, 8133, 817991, 1, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 13, 1, 1, 1, 1, 1, 1, ...
1, 1, 41, 19, 1, 1, 1, 1, 1, ...
1, 1, 281, 57, 26, 1, 1, 1, 1, ...
1, 1, 1183, 121, 75, 34, 1, 1, 1, ...
1, 1, 6728, 783, 154, 95, 43, 1, 1, ...
1, 1, 31529, 2861, 269, 190, 117, 53, 1, ...
1, 1, 167089, 8133, 1732, 325, 229, 141, 64, ...
Columns k=0+1,2-10 give:
A000012,
A028468,
A251073,
A251074,
A247218,
A251075,
A251076,
A251077,
A251078,
A251079.
-
b:= proc(n, l) option remember; local d, k; d:= nops(l)/3;
if n=0 then 1
elif min(l[])>0 then (m->b(n-m, map(x->x-m, l)))(min(l[]))
else for k while l[k]>0 do od;
`if`(n2*d+1 or max(l[k..k+d-1][])>0, 0,
b(n, [l[1..k-1][], 1$d, l[k+d..3*d][]]))
fi
end:
A:= (n, k)-> `if`(k=0, 1, b(n, [0$3*k])):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, l_List] := b[n, l] = Module[{d = Length[l]/3, k}, Which[n == 0, 1, Min[l] > 0, Function[{m}, b[n-m, l-m]][Min[l]], True, For[k=1, l[[k]] > 0 , k++]; If[n d]]] + If[d == 1 || k > 2d + 1 || Max[l[[k ;; k + d - 1]]] > 0, 0, b[n, Join[l[[1 ;; k-1]], Array[1&, d], l[[k+d ;; 3*d]]]]]]]; A[n_, k_] := If[k == 0, 1, b[n, Array[0&, 3k]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)
A236582
The number of tilings of an 8 X n floor with 1 X 4 tetrominoes.
Original entry on oeis.org
1, 1, 1, 1, 7, 15, 25, 37, 100, 229, 454, 811, 1732, 3777, 7858, 15339, 31273, 65536, 136600, 276535, 562728, 1159942, 2400783, 4918159, 10052140, 20627526, 42480474, 87254743, 178855138, 366854368
Offset: 0
-
p := (1-x)^3*(x+1)^3*(x^2+1)^3*(x^6-x^4-x^3-x^2+1) ;
q := -x^2 -13*x^10 -5*x^18 +8*x^6 -x -x^20 -9*x^4 +16*x^8 -13*x^12 -2*x^19 +1 +10*x^14 +5*x^7 +6*x^15 -6*x^11 +x^22 +6*x^16 +x^17 +2*x^5 -2*x^13 ;
taylor(p/q,x=0,30) ;
gfun[seriestolist](%) ;
A236577
The number of tilings of a 6 X n floor with 1 X 3 trominoes.
Original entry on oeis.org
1, 1, 1, 6, 13, 22, 64, 155, 321, 783, 1888, 4233, 9912, 23494, 54177, 126019, 295681, 687690, 1600185, 3738332, 8712992, 20293761, 47337405, 110368563, 257206012, 599684007, 1398149988, 3259051800, 7597720649, 17712981963
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 21.
- R. J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices, arXiv:1406.7788 [math.CO], 2014, eq (14).
- Index entries for linear recurrences with constant coefficients, signature (1,1,7,-1,-5,-10,-1,3,5,1,-1,-1).
-
g := (1-x^3)^2*(-x^2+1-x^3)/ (-x^10+x^12+x^11+10*x^6-5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1) ;
taylor(%,x=0,30) ;
gfun[seriestolist](%) ;
-
CoefficientList[Series[(1 - x^3)^2*(-x^2 + 1 - x^3)/(-x^10 + x^12 + x^11 + 10*x^6 - 5*x^9 - 3*x^8 + x^7 + x^4 - 7*x^3 + 5*x^5 - x^2 - x + 1), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
-
x='x+O('x^50); Vec((1-x^3)^2*(-x^2+1-x^3)/(-x^10+x^12+x^11+10*x^6 -5*x^9-3*x^8+x^7+x^4-7*x^3+5*x^5-x^2-x+1)) \\ G. C. Greubel, Apr 27 2017
A247117
Number of tilings of a 10 X n rectangle using 2n pentominoes of shape I.
Original entry on oeis.org
1, 1, 1, 1, 1, 8, 17, 28, 41, 56, 144, 317, 609, 1060, 1716, 3324, 6713, 13188, 24624, 43620, 80464, 153645, 296025, 562097, 1037921, 1920661, 3600832, 6820873, 12920804, 24211457, 45173688, 84493668, 158848825, 299451277, 562923960, 1055117520, 1976475968
Offset: 0
-
gf:= -(x^10+x^8-x^6-2*x^5-x^4-x^3+1) *(x-1)^4 *(x^4+x^3+x^2+x+1)^4 / (x^35 +x^33 -2*x^31 -7*x^30 -2*x^29 -6*x^28 +x^27 +9*x^26 +22*x^25 +8*x^24 +15*x^23 -4*x^22 -15*x^21 -39*x^20 -12*x^19 -20*x^18 +6*x^17 +10*x^16 +45*x^15 +8*x^14 +19*x^13 -4*x^12 -4*x^11 -33*x^10 -6*x^9 -10*x^8 +x^7 -3*x^6 +12*x^5 +x^3 +x-1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..50);
A250663
Number of tilings of a 12 X n rectangle using 2n hexominoes of shape I.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 9, 19, 31, 45, 61, 79, 196, 419, 786, 1341, 2134, 3221, 5789, 10995, 20621, 37149, 63931, 105379, 180201, 319826, 578034, 1040971, 1840549, 3171726, 5465324, 9529019, 16830425, 29914626, 53016504, 92934619, 161999425, 282619059, 495436514
Offset: 0
-
gf:= -(x^15-x^12-2*x^10-2*x^9+x^7+2*x^6+x^5+x^4+x^3-1) *(x-1)^5 *(x+1)^5 *(x^2+x+1)^5 *(x^2-x+1)^5 / (x^51 -x^48 -3*x^46 -8*x^45 +2*x^43 +8*x^42 +3*x^41 +18*x^40 +28*x^39 -x^38 -11*x^37 -29*x^36 -15*x^35 -45*x^34
-56*x^33 +5*x^32 +24*x^31 +61*x^30 +30*x^29 +60*x^28 +70*x^27 -10*x^26 -25*x^25 -80*x^24 -30*x^23 -45*x^22 -61*x^21 +10*x^20 +10*x^19 +71*x^18 +15*x^17 +28*x^16 +38*x^15 -5*x^14 -2*x^13 -43*x^12 -8*x^11 -8*x^10 -13*x^9 +x^8 -4*x^7 +14*x^6 +x^3 +x -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
A250664
Number of tilings of a 14 X n rectangle using 2n heptominoes of shape I.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 10, 21, 34, 49, 66, 85, 106, 256, 535, 985, 1654, 2596, 3871, 5545, 9391, 16956, 30589, 53481, 89851, 145152, 226297, 364656, 610062, 1045297, 1799392, 3065145, 5121255, 8359876, 13624960, 22431292, 37434945, 63098713, 106641142, 179356873
Offset: 0
-
gf:= -(x^21 +x^18 -2*x^15 -3*x^14 -2*x^12 -2*x^11 +x^9 +2*x^8 +3*x^7 +x^6 +x^5 +x^4-1) *(x-1)^6 *(x^6+x^5+x^4+x^3+x^2+x+1)^6 / (x^70 +x^67 -3*x^64 -10*x^63 -3*x^61 -9*x^60 +3*x^58 +23*x^57 +45*x^56 +3*x^55 +21*x^54 +36*x^53 -x^52 -19*x^51 -76*x^50 -121*x^49 -18*x^48 -63*x^47 -84*x^46 +6*x^45 +51*x^44 +140*x^43 +216*x^42 +45*x^41 +105*x^40 +126*x^39
-15*x^38 -75*x^37 -154*x^36 -267*x^35 -60*x^34 -105*x^33 -126*x^32 +20*x^31 +65*x^30 +98*x^29 +236*x^28 +45*x^27 +63*x^26 +90*x^25 -15*x^24 -33*x^23 -40*x^22 -153*x^21 -18*x^20 -33*x^19 -48*x^18 +6*x^17 +15*x^16 +8*x^15 +69*x^14 +9*x^13 +9*x^12 +15*x^11 -x^10 -x^9 +5*x^8 -17*x^7 -x^4 -x +1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..50);
A250665
Number of tilings of a 16 X n rectangle using 2n octominoes of shape I.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 11, 23, 37, 53, 71, 91, 113, 137, 324, 665, 1206, 1999, 3102, 4579, 6500, 8941, 14428, 24963, 43558, 74221, 122158, 193995, 298020, 444445, 682749, 1087886, 1781424, 2948681, 4861063, 7903814, 12610046, 19701987, 30702835, 48251196
Offset: 0
-
gf:= -(x^12 +x^11 +x^10 +2*x^9 +2*x^8 +2*x^7 +3*x^6 +2*x^5 +x^4 +2*x^3 +x^2 +1) *(x^15 -x^12 -x^11 -x^8 -2*x^7 +2*x^5 +3*x^4 +2*x^3 -x -1) *(x-1)^7 *(x+1)^7 *(x^2+1)^7 *(x^4+1)^7 / (x^91 +x^90 +x^89 +x^88 -4*x^84 -15*x^83 -15*x^82 -15*x^81 -12*x^80 -x^79 -x^78 +5*x^77 +41*x^76
+96*x^75 +96*x^74 +93*x^73 +67*x^72 +12*x^71 +8*x^70 -38*x^69 -182*x^68 -347*x^67 -346*x^66 -324*x^65 -225*x^64 -59*x^63 -31*x^62 +123*x^61 +459*x^60 +789*x^59 +782*x^58 +712*x^57 +496*x^56 +159*x^55 +75*x^54 -219*x^53 -723*x^52 -1185*x^51 -1164*x^50 -1038*x^49 -744*x^48 -261*x^47 -121*x^46 +229*x^45 +733*x^44 +1195*x^43 +1160*x^42 +1020*x^41 +768*x^40
+271*x^39 +131*x^38 -135*x^37 -471*x^36 -808*x^35 -773*x^34 -675*x^33 -549*x^32 -177*x^31 -93*x^30 +33*x^29 +198*x^28 +384*x^27 +363*x^26 +321*x^25 +283*x^24 +76*x^23 +48*x^22 -7*x^21 -71*x^20 -147*x^19 -140*x^18 -123*x^17 -118*x^16 -35*x^15 -24*x^14 -13*x^13 -2*x^12 +16*x^11 +15*x^10 +14*x^9 +20*x^8 +x^7 +x^6 +x^5 +x^4 -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..60);
A250666
Number of tilings of a 18 X n rectangle using 2n nonominoes of shape I.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 25, 40, 57, 76, 97, 120, 145, 172, 400, 809, 1449, 2376, 3652, 5345, 7529, 10284, 13696, 21232, 35417, 60028, 100004, 161664, 252945, 383660, 565776, 813712, 1201856, 1838369, 2895233, 4629793, 7412665, 11761912, 18384420
Offset: 0
-
gf:= -(x^36 +x^32 -3*x^28 -4*x^27 -3*x^24 -3*x^23 +3*x^20 +6*x^19 +6*x^18 +3*x^16 +4*x^15 +3*x^14 -x^12 -2*x^11 -3*x^10 -4*x^9 -x^8 -x^7 -x^6 -x^5 +1) *(x-1)^8 *(x^2+x +1)^8 *(x^6+x^3+1)^8 / (x^117 +x^113 -4*x^109 -13*x^108 -4*x^105 -12*x^104 +6*x^101 +43*x^100 +78*x^99 +6*x^97 +40*x^96 +66*x^95 -4*x^93 -55*x^92 -209*x^91 -286*x^90 -4*x^89 -52*x^88 -180*x^87 -220*x^86 +x^85 +33*x^84 +225*x^83 +605*x^82 +716*x^81
+32*x^80 +200*x^79 +480*x^78 +495*x^77 -8*x^76 -120*x^75 -540*x^74 -1155*x^73 -1295*x^72 -112*x^71 -448*x^70 -840*x^69 -792*x^68 +28*x^67 +252*x^66 +840*x^65 +1518*x^64 +1744*x^63 +224*x^62 +644*x^61 +1008*x^60 +924*x^59 -56*x^58 -336*x^57 -882*x^56 -1386*x^55 -1772*x^54 -280*x^53 -616*x^52 -840*x^51 -792*x^50 +70*x^49 +294*x^48 +630*x^47 +858*x^46
+1365*x^45 +224*x^44 +392*x^43 +480*x^42 +503*x^41 -56*x^40 -168*x^39 -300*x^38 -354*x^37 -803*x^36 -112*x^35 -160*x^34 -204*x^33 -244*x^32 +28*x^31 +60*x^30 +114*x^29 +103*x^28 +362*x^27 +32*x^26 +62*x^25 +72*x^24 +90*x^23 -8*x^22 -20*x^21 -31*x^20 -13*x^19 -118*x^18 -12*x^17 -12*x^16 -12*x^15 -20*x^14 +x^13 +x^12 +x^11 -7*x^10 +22*x^9 +x^5 +x -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..60);
A250667
Number of tilings of a 20 X n rectangle using 2n decominoes of shape I.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 27, 43, 61, 81, 103, 127, 153, 181, 211, 484, 967, 1714, 2785, 4246, 6169, 8632, 11719, 15520, 20131, 30169, 48753, 80533, 131499, 209215, 323073, 484567, 707587, 1008733, 1407649, 2011933, 2972524, 4525434, 7018281, 10944565
Offset: 0
-
gf:= -(x^45 -x^40 -4*x^36 -4*x^35 +3*x^31 +4*x^30 +6*x^27 +9*x^26 +6*x^25 -3*x^22 -6*x^21 -6*x^20 -4*x^18 -6*x^17 -6*x^16 -4*x^15 +x^13 +2*x^12 +3*x^11 +4*x^10 +x^9 +x^8 +x^7 +x^6 +x^5 -1) *(x-1)^9 *(x+1)^9 *(x^4+x^3+x^2+x+1)^9 *(x^4-x^3+x^2-x+1)^9 / (x^145 -x^140 -5*x^136 -14*x^135 +4*x^131 +14*x^130 +10*x^127 +60*x^126 +91*x^125 -6*x^122
-47*x^121 -91*x^120 -10*x^118 -105*x^117 -330*x^116 -364*x^115 +4*x^113 +61*x^112 +252*x^111 +364*x^110 +5*x^109 +95*x^108 +500*x^107 +1100*x^106 +1001*x^105 -x^104 -37*x^103 -280*x^102 -814*x^101 -1002*x^100 -45*x^99 -405*x^98 -1425*x^97 -2475*x^96 -2002*x^95 +9*x^94 +153*x^93 +765*x^92 +1760*x^91 +2011*x^90 +180*x^89 +1020*x^88
+2700*x^87 +3960*x^86 +3003*x^85 -36*x^84 -372*x^83 -1380*x^82 -2673*x^81 -3039*x^80 -420*x^79 -1680*x^78 -3570*x^77 -4620*x^76 -3432*x^75 +84*x^74 +588*x^73 +1722*x^72 +2904*x^71 +3516*x^70 +630*x^69 +1890*x^68 +3360*x^67 +3960*x^66 +3003*x^65 -126*x^64 -630*x^63 -1512*x^62 -2244*x^61 -3129*x^60 -630*x^59 -1470*x^58 -2250*x^57 -2475*x^56
-2011*x^55 +126*x^54 +462*x^53 +930*x^52 +1188*x^51 +2137*x^50 +420*x^49 +780*x^48 +1050*x^47 +1136*x^46 +1037*x^45 -84*x^44 -228*x^43 -390*x^42 -412*x^41 -1121*x^40 -180*x^39 -270*x^38 -379*x^37 -411*x^36 -418*x^35 +36*x^34 +72*x^33 +132*x^32 +98*x^31 +454*x^30 +45*x^29 +91*x^28
+114*x^27 +114*x^26 +127*x^25 -9*x^24 -22*x^23 -34*x^22 -9*x^21 -136*x^20 -14*x^19 -14*x^18 -14*x^17 -14*x^16 -23*x^15 +x^14 +x^13 +x^12 -8*x^11 +24*x^10 +x^5 +x -1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..60);
Showing 1-10 of 10 results.
Comments