A250662
Number A(n,k) of tilings of a 2k X n rectangle using 2n k-ominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 6, 36, 1, 1, 1, 1, 1, 1, 13, 95, 1, 1, 1, 1, 1, 1, 7, 22, 281, 1, 1, 1, 1, 1, 1, 1, 15, 64, 781, 1, 1, 1, 1, 1, 1, 1, 8, 25, 155, 2245, 1, 1, 1, 1, 1, 1, 1, 1, 17, 37, 321, 6336, 1, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 5, 1, 1, 1, 1, 1, 1, ...
1, 1, 11, 6, 1, 1, 1, 1, 1, ...
1, 1, 36, 13, 7, 1, 1, 1, 1, ...
1, 1, 95, 22, 15, 8, 1, 1, 1, ...
1, 1, 281, 64, 25, 17, 9, 1, 1, ...
1, 1, 781, 155, 37, 28, 19, 10, 1, ...
1, 1, 2245, 321, 100, 41, 31, 21, 11, ...
Columns k=0+1,2-10 give:
A000012,
A005178(n+1),
A236577,
A236582,
A247117,
A250663,
A250664,
A250665,
A250666,
A250667.
-
b:= proc(n, l) option remember; local d, k; d:= nops(l)/2;
if n=0 then 1
elif min(l[])>0 then (m->b(n-m, map(x->x-m, l)))(min(l[]))
else for k while l[k]>0 do od;
`if`(nd+1 or max(l[k..k+d-1][])>0, 0,
b(n, [l[1..k-1][],1$d,l[k+d..2*d][]]))
fi
end:
A:= (n, k)-> `if`(k=0, 1, b(n, [0$2*k])):
seq(seq(A(n,d-n), n=0..d), d=0..14);
-
b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, k}, Which[n == 0, 1, Min[l] > 0 , Function[{m}, b[n-m, l-m]][Min[l]], True, For[k=1, l[[k]] > 0, k++]; If[n d]]] + If[d == 1 || k > d+1 || Max[l[[k ;; k+d-1]]] > 0, 0, b[n, Join[l[[1 ;; k-1]], Array[1&, d], l[[k+d ;; 2*d]]]]]]]; A[n_, k_] := If[k == 0, 1, b[n, Array[0&, 2k]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)
A052535
Expansion of (1-x)*(1+x)/(1-x-2*x^2+x^4).
Original entry on oeis.org
1, 1, 2, 4, 7, 14, 26, 50, 95, 181, 345, 657, 1252, 2385, 4544, 8657, 16493, 31422, 59864, 114051, 217286, 413966, 788674, 1502555, 2862617, 5453761, 10390321, 19795288, 37713313, 71850128, 136886433, 260791401, 496850954, 946583628
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, Grand zigzag knight's paths, arXiv:2402.04851 [math.CO], 2024. See p. 18.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 465
- Todd Mullen, On Variants of Diffusion, Dalhousie University (Halifax, NS Canada, 2020).
- Todd Mullen, Richard Nowakowski, and Danielle Cox, Counting Path Configurations in Parallel Diffusion, arXiv:2010.04750 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (1,2,0,-1).
-
a:=[1,1,2,4];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-4]; od; a; # G. C. Greubel, May 09 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2)/( 1-x-2*x^2+x^4) )); // G. C. Greubel, May 09 2019
-
spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Prod(Z,Z)))))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
-
CoefficientList[Series[(1-x^2)/(1-x-2x^2+x^4), {x, 0, 40}], x] (* or *)
Table[Length@ Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {_, a_, _} /; And[EvenQ@ a, a != 2]]], 1], {n, 0, 40}] (* Michael De Vlieger, Aug 17 2016 *)
LinearRecurrence[{1,2,0,-1},{1,1,2,4},40] (* Harvey P. Dale, Apr 12 2018 *)
-
my(x='x+O('x^40)); Vec((1-x^2)/(1-x-2*x^2+x^4)) \\ G. C. Greubel, May 09 2019
-
((1-x^2)/(1-x-2*x^2+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
A251074
Number of tilings of a 12 X n rectangle using 3n tetrominoes of shape I.
Original entry on oeis.org
1, 1, 1, 1, 26, 75, 154, 269, 1732, 5764, 15131, 34345, 135950, 462186, 1356284, 3539433, 11681091, 38519022, 118366429, 334591568, 1037603086, 3309045401, 10296063522, 30414763937, 92735958046, 289374852696, 899439481823, 2716896548850, 8270384213984
Offset: 0
A236579
The number of tilings of a 5 X (4n) floor with 1 X 4 tetrominoes.
Original entry on oeis.org
1, 3, 15, 75, 371, 1833, 9057, 44753, 221137, 1092699, 5399327, 26679563, 131831075, 651413681, 3218814561, 15905050017, 78591236385, 388340962771, 1918899743823, 9481812581835, 46852249642771
Offset: 0
- Mudit Aggarwal and Samrith Ram, Generating functions for straight polyomino tilings of narrow rectangles, arXiv:2206.04437 [math.CO], 2022.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 34.
- R. J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices, arXiv:1406.7788 [math.CO], eq. (24).
- Index entries for linear recurrences with constant coefficients, signature (6,-6,4,-1).
-
g := (1-x)^3/(-6*x+1+6*x^2-4*x^3+x^4) ;
taylor(%,x=0,30) ; gfun[seriestolist](%) ;
# Alternatively:
a := n -> hypergeom([(n+1)/3, (n+2)/3, n/3 + 1, -n], [1/4, 1/2, 3/4], -27/128):
seq(simplify(a(n)), n=0..20); # Peter Luschny, Nov 02 2017
-
LinearRecurrence[{6, -6, 4, -1}, {1, 3, 15, 75}, 21] (* Jean-François Alcover, Jul 14 2018 *)
A236580
The number of tilings of a 6 X (4n) floor with 1 X 4 tetrominoes.
Original entry on oeis.org
1, 4, 25, 154, 943, 5773, 35344, 216388, 1324801, 8110882, 49657576, 304020556, 1861317163, 11395616227, 69767835259, 427142397547, 2615110919020, 16010597772667, 98022320649478, 600125959188877, 3674175070596919, 22494548423870416, 137719270059617428
Offset: 0
- Mudit Aggarwal and Samrith Ram, Generating functions for straight polyomino tilings of narrow rectangles, arXiv:2206.04437 [math.CO], 2022.
- R. J. Mathar, Paving rectangular regions..., arXiv:1311.6135, Table 35.
- R. J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices, arXiv:1406.7788 [math.CO], eq. (26).
- Index entries for linear recurrences with constant coefficients, signature (7,-6,4,-1).
A236581
The number of tilings of a 7 X (4n) floor with 1 X 4 tetrominoes.
Original entry on oeis.org
1, 5, 37, 269, 1949, 14121, 102313, 741305, 5371097, 38916077, 281964941, 2042966149, 14802232757, 107249008849, 777068573905, 5630220503025, 40793546383409, 295568073335893, 2141527121824885, 15516352499614333, 112423136012925517, 814557513519681785
Offset: 0
- Mudit Aggarwal and Samrith Ram, Generating functions for straight polyomino tilings of narrow rectangles, arXiv:2206.04437 [math.CO], 2022.
- R. J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 36.
- R. J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices, arXiv:1406.7788 [math.CO], eq. (27).
- Index entries for linear recurrences with constant coefficients, signature (8,-6,4,-1).
-
g := (1-x)^3/(-8*x+1+6*x^2-4*x^3+x^4) ;
taylor(%,x=0,30) ;
gfun[seriestolist](%) ;
-
LinearRecurrence[{8, -6, 4, -1}, {1, 5, 37, 269}, 19] (* Jean-François Alcover, Feb 19 2019 *)
Showing 1-6 of 6 results.
Comments