cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A250662 Number A(n,k) of tilings of a 2k X n rectangle using 2n k-ominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 6, 36, 1, 1, 1, 1, 1, 1, 13, 95, 1, 1, 1, 1, 1, 1, 7, 22, 281, 1, 1, 1, 1, 1, 1, 1, 15, 64, 781, 1, 1, 1, 1, 1, 1, 1, 8, 25, 155, 2245, 1, 1, 1, 1, 1, 1, 1, 1, 17, 37, 321, 6336, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2014

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,    1,   1,   1,  1,  1,  1,  1, ...
  1, 1,    1,   1,   1,  1,  1,  1,  1, ...
  1, 1,    5,   1,   1,  1,  1,  1,  1, ...
  1, 1,   11,   6,   1,  1,  1,  1,  1, ...
  1, 1,   36,  13,   7,  1,  1,  1,  1, ...
  1, 1,   95,  22,  15,  8,  1,  1,  1, ...
  1, 1,  281,  64,  25, 17,  9,  1,  1, ...
  1, 1,  781, 155,  37, 28, 19, 10,  1, ...
  1, 1, 2245, 321, 100, 41, 31, 21, 11, ...
		

Crossrefs

Columns k=0+1,2-10 give: A000012, A005178(n+1), A236577, A236582, A247117, A250663, A250664, A250665, A250666, A250667.
Cf. A251072.

Programs

  • Maple
    b:= proc(n, l) option remember; local d, k; d:= nops(l)/2;
          if n=0 then 1
        elif min(l[])>0 then (m->b(n-m, map(x->x-m, l)))(min(l[]))
        else for k while l[k]>0 do od;
             `if`(nd+1 or max(l[k..k+d-1][])>0, 0,
              b(n, [l[1..k-1][],1$d,l[k+d..2*d][]]))
          fi
        end:
    A:= (n, k)-> `if`(k=0, 1, b(n, [0$2*k])):
    seq(seq(A(n,d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{d = Length[l]/2, k}, Which[n == 0, 1, Min[l] > 0 , Function[{m}, b[n-m, l-m]][Min[l]], True, For[k=1, l[[k]] > 0, k++]; If[n d]]] + If[d == 1 || k > d+1 || Max[l[[k ;; k+d-1]]] > 0, 0, b[n, Join[l[[1 ;; k-1]], Array[1&, d], l[[k+d ;; 2*d]]]]]]]; A[n_, k_] := If[k == 0, 1, b[n, Array[0&, 2k]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)

A052535 Expansion of (1-x)*(1+x)/(1-x-2*x^2+x^4).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 50, 95, 181, 345, 657, 1252, 2385, 4544, 8657, 16493, 31422, 59864, 114051, 217286, 413966, 788674, 1502555, 2862617, 5453761, 10390321, 19795288, 37713313, 71850128, 136886433, 260791401, 496850954, 946583628
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) = number of compositions of n with parts in {2,1,3,5,7,9,...}. The generating function follows easily from Theorem 1.1 of the Hoggatt et al. reference. Example: a(4)= 7 because we have 22, 31, 13, 211, 121, 112, and 1111. - Emeric Deutsch, Aug 17 2016.
Diagonal sums of A054142. - Paul Barry, Jan 21 2005
Equals INVERT transform of (1, 1, 1, 0, 1, 0, 1, 0, 1, ...). - Gary W. Adamson, Apr 27 2009
Number of tilings of a 4 X 2n rectangle by 4 X 1 tetrominoes. - M. Poyraz Torcuk, Dec 10 2021

Crossrefs

Cf. A275446.
Bisection of A003269 (odd part),

Programs

  • GAP
    a:=[1,1,2,4];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-4]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2)/( 1-x-2*x^2+x^4) )); // G. C. Greubel, May 09 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Prod(Z,Z)))))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-x-2x^2+x^4), {x, 0, 40}], x] (* or *)
    Table[Length@ Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {_, a_, _} /; And[EvenQ@ a, a != 2]]], 1], {n, 0, 40}]  (* Michael De Vlieger, Aug 17 2016 *)
    LinearRecurrence[{1,2,0,-1},{1,1,2,4},40] (* Harvey P. Dale, Apr 12 2018 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x^2)/(1-x-2*x^2+x^4)) \\ G. C. Greubel, May 09 2019
    
  • Sage
    ((1-x^2)/(1-x-2*x^2+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1 - x^2)/(1 - x - 2*x^2 + x^4).
a(n) = a(n-1) + 2*a(n-2) - a(n-4), with a(0)=1, a(1)=1, a(2)=2, a(3)=4.
a(n) = Sum_{alpha = RootOf(1-x-2*x^2+x^4)} (1/283)*(27 + 112*alpha + 9*alpha^2 -48*alpha^3)*alpha^(-n-1).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k, k). - Paul Barry, Jan 21 2005
a(n) = A158943(n) -A158943(n-2). - R. J. Mathar, Jan 13 2023

Extensions

More terms from James Sellers, Jun 05 2000

A251074 Number of tilings of a 12 X n rectangle using 3n tetrominoes of shape I.

Original entry on oeis.org

1, 1, 1, 1, 26, 75, 154, 269, 1732, 5764, 15131, 34345, 135950, 462186, 1356284, 3539433, 11681091, 38519022, 118366429, 334591568, 1037603086, 3309045401, 10296063522, 30414763937, 92735958046, 289374852696, 899439481823, 2716896548850, 8270384213984
Offset: 0

Views

Author

Alois P. Heinz, Nov 29 2014

Keywords

Crossrefs

Column k=4 of A251072.
Cf. A236582.

A236579 The number of tilings of a 5 X (4n) floor with 1 X 4 tetrominoes.

Original entry on oeis.org

1, 3, 15, 75, 371, 1833, 9057, 44753, 221137, 1092699, 5399327, 26679563, 131831075, 651413681, 3218814561, 15905050017, 78591236385, 388340962771, 1918899743823, 9481812581835, 46852249642771
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
Related to A002378 by an Invert Transform.

Crossrefs

Cf. A003269 (4Xn floor), A236580 - A236582, A109960.

Programs

  • Maple
    g := (1-x)^3/(-6*x+1+6*x^2-4*x^3+x^4) ;
    taylor(%,x=0,30) ; gfun[seriestolist](%) ;
    # Alternatively:
    a := n -> hypergeom([(n+1)/3, (n+2)/3, n/3 + 1, -n], [1/4, 1/2, 3/4], -27/128):
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Nov 02 2017
  • Mathematica
    LinearRecurrence[{6, -6, 4, -1}, {1, 3, 15, 75}, 21] (* Jean-François Alcover, Jul 14 2018 *)

Formula

G.f.: (1-x)^3/(-6*x+1+6*x^2-4*x^3+x^4).
a(n) = Sum_{k = 0..n} binomial(n + 3*k, 4*k)*2^k = Sum_{k = 0..n} A109960(n,k)*2^k. - Peter Bala, Nov 02 2017
a(n) = hypergeom([(n+1)/3, (n+2)/3, n/3 + 1, -n], [1/4, 1/2, 3/4], -27/128). - Peter Luschny, Nov 02 2017

A236580 The number of tilings of a 6 X (4n) floor with 1 X 4 tetrominoes.

Original entry on oeis.org

1, 4, 25, 154, 943, 5773, 35344, 216388, 1324801, 8110882, 49657576, 304020556, 1861317163, 11395616227, 69767835259, 427142397547, 2615110919020, 16010597772667, 98022320649478, 600125959188877, 3674175070596919, 22494548423870416, 137719270059617428
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A003269 (4Xn floor), A236579 - A236582.

Programs

  • Maple
    g := (1-x)^3/(-7*x+1+6*x^2-4*x^3+x^4) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;

Formula

G.f.: (1-x)^3/(-7*x+1+6*x^2-4*x^3+x^4).

A236581 The number of tilings of a 7 X (4n) floor with 1 X 4 tetrominoes.

Original entry on oeis.org

1, 5, 37, 269, 1949, 14121, 102313, 741305, 5371097, 38916077, 281964941, 2042966149, 14802232757, 107249008849, 777068573905, 5630220503025, 40793546383409, 295568073335893, 2141527121824885, 15516352499614333, 112423136012925517, 814557513519681785
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.

Crossrefs

Cf. A003269 (4Xn floor), A236579 - A236582.

Programs

  • Maple
    g := (1-x)^3/(-8*x+1+6*x^2-4*x^3+x^4) ;
    taylor(%,x=0,30) ;
    gfun[seriestolist](%) ;
  • Mathematica
    LinearRecurrence[{8, -6, 4, -1}, {1, 5, 37, 269}, 19] (* Jean-François Alcover, Feb 19 2019 *)

Formula

G.f.: (1-x)^3/(-8*x+1+6*x^2-4*x^3+x^4).
Showing 1-6 of 6 results.