A054142
Triangular array binomial(2*n-k, k), k=0..n, n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 15, 10, 1, 1, 9, 28, 35, 15, 1, 1, 11, 45, 84, 70, 21, 1, 1, 13, 66, 165, 210, 126, 28, 1, 1, 15, 91, 286, 495, 462, 210, 36, 1, 1, 17, 120, 455, 1001, 1287, 924, 330, 45, 1, 1, 19, 153, 680, 1820, 3003, 3003, 1716, 495, 55, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 5, 6, 1;
1, 7, 15, 10, 1;
1, 9, 28, 35, 15, 1;
1, 11, 45, 84, 70, 21, 1;
1, 13, 66, 165, 210, 126, 28, 1;
1, 15, 91, 286, 495, 462, 210, 36, 1; ...
...
(0, 1, 0, 0, 0, 0, ...) DELTA (1, 0, 1, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 5, 6, 1;
0, 1, 7, 15, 10, 1;
0, 1, 9, 28, 35, 15, 1. _Philippe Deléham_, Apr 01 2012
- Vincenzo Librandi, Table of n, a(n) for n = 0..495
- E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
- D. Dumont and J. Zeng, Polynomes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
- Molly Fenn and Eric Sommers, A transitivity result for ad-nilpotent ideals in type A, arXiv:2101.04091 [math.RT], 2021.
- J. L. Jacobsen, and J. Salas, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV. Chromatic polynomial with cyclic boundary conditions, J. Stat. Phys. 122 (2006) 705-760, arXiv:cond-mat/0407444 See Eq. 2.27. Mentions this sequence. - _N. J. A. Sloane_, Mar 14 2014
- Jay Kappraff and Gary W. Adamson, Polygons and Chaos, 5th Interdispl Symm. Congress and Exh. Jul 8-14, Sydney, 2001 - [with commercial pop-ups].
- Jay Kappraff and Gary W. Adamson, Polygons and Chaos, Journal of Dynamical Systems and Geometric Theories, Vol. 2 pp. 79-94, (Nov 2004).
These are the even-indexed rows of
A011973, the odd-indexed rows form
A053123.
Cf.
A000108,
A003558,
A027989,
A052535,
A054142,
A076756,
A084938,
A085478,
A098435,
A115139,
A172431,
A172991,
A188648.
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(2*n-k,k) ))); # G. C. Greubel, Aug 01 2019
-
[Binomial(2*n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
-
T:=(n,k)->binomial(2*n-k,k): seq(seq(T(n,k), k=0..n), n=0..11);
-
Flatten[Table[Binomial[2n - k, k], {n, 0, 11}, {k, 0, n}]] (* Emanuele Munarini, Apr 07 2011 *)
-
create_list(binomial(2*n-k,k),n,0,10,k,0,n); /* Emanuele Munarini, Apr 07 2011 */
-
T(n,k)=if(n<0,0,polcoeff(charpoly(matrix(n,n,i,j,-min(i,j))),k))
-
[[binomial(2*n-k,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
A274895
T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 4, 12, 7, 6, 8, 36, 16, 14, 12, 16, 108, 37, 38, 26, 24, 32, 324, 86, 104, 84, 50, 48, 64, 972, 200, 290, 275, 192, 95, 96, 128, 2916, 465, 815, 913, 753, 436, 181, 192, 256, 8748, 1081, 2291, 3064, 3017, 2049, 990, 345, 384, 512, 26244, 2513, 6434, 10337
Offset: 1
Some solutions for n=4 k=4
..0..1..0..2. .0..1..2..0. .0..1..0..2. .0..1..2..0. .0..1..2..1
..2..1..2..1. .1..2..0..1. .2..1..0..2. .1..2..0..1. .1..2..0..1
..1..0..2..1. .2..0..1..2. .1..0..2..1. .1..2..1..2. .1..0..1..2
..1..0..1..0. .2..0..1..0. .1..0..2..0. .2..0..1..2. .2..0..1..0
A158943
INVERT transform of A027656: (1, 0, 2, 0, 3, 0, 4, 0, 5, ...).
Original entry on oeis.org
1, 1, 3, 5, 10, 19, 36, 69, 131, 250, 476, 907, 1728, 3292, 6272, 11949, 22765, 43371, 82629, 157422, 299915, 571388, 1088589, 2073943, 3951206, 7527704, 14341527, 27322992, 52054840, 99173120, 188941273, 359964521, 685792227, 1306548149
Offset: 1
The INVERT transform of (1, N, ...) begins (1, (N+1), ...) so that we have (1, 1, ...) placed in ascending magnitude in the bottom row. In the top row we place an equal number of descending terms: (..., 0, 3, 0, 2, 0, 1). Take the dot product of terms in top and bottom rows, adding the result to the next term A027656: (1, 0, 2, 0, 3, ...). a(6) = 19 given: 3, 0, 2, 0, 1 1, 1, 3, 5, 10 Dot product of top row terms * bottom row terms = (1, 0, 2, 0, 3) dot (1, 1, 3, 5, 10) = (3 + 0 + 6 + 0 + 10) = 19, which is added to the next term in (1, 0, 2, 0, 3, ...); i.e., (an 0) = 19.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, Grand zigzag knight's paths, arXiv:2402.04851 [math.CO], 2024. See p. 18.
- Jia Huang, A coin flip game and generalizations of Fibonacci numbers, arXiv:2501.07463 [math.CO], 2025. See p. 9.
- Index entries for linear recurrences with constant coefficients, signature (1,2,0,-1).
-
a:=[1,1,3,5];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Jul 12 2019
-
I:=[1,1,3,5]; [n le 4 select I[n] else Self(n-1)+2*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 09 2019
-
A027656 := proc(n) if type(n,odd) then 0; else n/2+1 ; fi; end: L := [seq(A027656(n), n=0..100)] ; read("transforms"); INVERT(L) ; # R. J. Mathar, Apr 02 2009
-
LinearRecurrence[{1, 2, 0, -1}, {1, 1, 3, 5}, 40] (* Vincenzo Librandi, Jul 09 2019 *)
-
my(x='x+O('x^40)); Vec(x/(1-x-2*x^2+x^4)) \\ G. C. Greubel, Jul 12 2019
-
a=(x/(1-x-2*x^2+x^4)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 12 2019
A275446
Triangle read by rows: T(n,k) is the number of compositions of n with parts in {2,1,3,5,7,9,...} and having asymmetry degree equal to k (n>=0; 0<=k<=floor(n/3)).
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 4, 4, 10, 6, 16, 4, 8, 30, 12, 11, 48, 36, 15, 82, 76, 8, 21, 128, 164, 32, 29, 204, 312, 112, 40, 312, 596, 288, 16, 55, 482, 1064, 704, 80, 76, 728, 1884, 1536, 320, 105, 1100, 3212, 3248, 960, 32, 145, 1640, 5428, 6464, 2624, 192
Offset: 0
Row 4 is [3,4] because the compositions of 4 with parts in {2,1,3,5,7,...} are 22, 31, 13, 211, 121, 112, and 1111, having asymmetry degrees 0, 1, 1, 1, 0, 1, and 0, respectively.
Triangle starts:
1;
1;
2;
2,2;
3,4;
4,10;
6,16,4.
- S. Heubach and T. Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
- Krithnaswami Alladi and V. E. Hoggatt, Jr. Compositions with Ones and Twos, Fibonacci Quarterly, 13 (1975), 233-239.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
-
G := (1-z^4)/(1-z-z^2+(1-2*t)*z^3-z^4+z^6): Gser := simplify(series(G, z = 0, 30)): for n from 0 to 25 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
-
Table[BinCounts[#, {0, 1 + Floor[n/3], 1}] &@ Map[Total, Map[Map[Boole[# >= 1] &, BitXor[Take[# - 1, Ceiling[Length[#]/2]], Reverse@ Take[# - 1, -Ceiling[Length[#]/2]]]] &, Flatten[Map[Permutations, DeleteCases[ IntegerPartitions@ n, {_, a_, _} /; And[EvenQ@ a, a != 2]]], 1]]], {n, 0, 16}] // Flatten (* Michael De Vlieger, Aug 17 2016 *)
A373639
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,k).
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 9, 16, 27, 43, 71, 119, 196, 322, 533, 882, 1455, 2402, 3970, 6558, 10829, 17887, 29548, 48804, 80608, 133146, 219925, 363254, 599998, 991044, 1636944, 2703794, 4465957, 7376591, 12184181, 20125051, 33241289, 54905857, 90690002, 149795989
Offset: 0
-
LinearRecurrence[{1,0,2,0,0,-1},{1, 1, 1, 2, 4, 6},40] (* James C. McMahon, Jun 14 2024 *)
Table[Sum[Binomial[2n-5k,k],{k,0,Floor[n/3]}],{n,0,40}] (* Harvey P. Dale, Sep 29 2024 *)
-
a(n) = sum(k=0, n\3, binomial(2*n-5*k, k));
A373638
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-5*k,k).
Original entry on oeis.org
1, 1, 2, 5, 9, 21, 43, 92, 196, 414, 882, 1869, 3970, 8427, 17887, 37975, 80608, 171121, 363254, 771119, 1636944, 3474913, 7376591, 15659094, 33241289, 70564951, 149795989, 317988473, 675029164, 1432958824, 3041899638, 6457375642, 13707783053, 29099021980
Offset: 0
A052685
Expansion of e.g.f. (1-x^2)/(1-x-2*x^2+x^4).
Original entry on oeis.org
1, 1, 4, 24, 168, 1680, 18720, 252000, 3830400, 65681280, 1251936000, 26225337600, 599710003200, 14851444608000, 396138155212800, 11320537003776000, 345079573622784000, 11176410365632512000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( (1-x^2)/(1-x-2*x^2+x^4) ))); // G. C. Greubel, Jun 03 2022
-
spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Prod(Z,Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
b[n_]:= b[n]= If[n<4, n!-2*Boole[n==3], b[n-1] +2*b[n-2] -b[n-4]]; (* b=A052535 *)
A052685[n_]:= n!*b[n];
Table[A052685[n], {n, 0, 40}] (* G. C. Greubel, Jun 03 2022 *)
With[{nn=20},CoefficientList[Series[(1-x^2)/(1-x-2 x^2+x^4),{x,0,nn}],x] Range[0,nn]!]
-
@CachedFunction
def b(n): # b = A052535
if (n<4): return factorial(n) - 2*bool(n==3)
else: return b(n-1) + 2*b(n-2) - b(n-4)
def A052685(n): return factorial(n)*b(n)
[A052685(n) for n in (0..40)] # G. C. Greubel, Jun 03 2022
A052969
Expansion of (1-x)/(1-x-2x^2+x^4).
Original entry on oeis.org
1, 0, 2, 2, 5, 9, 17, 33, 62, 119, 226, 431, 821, 1564, 2980, 5677, 10816, 20606, 39258, 74793, 142493, 271473, 517201, 985354, 1877263, 3576498, 6813823, 12981465, 24731848, 47118280, 89768153, 171023248, 325827706, 620755922, 1182643181
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Sequence(Prod(Union(Prod(Union(Sequence(Z),Z),Z),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
CoefficientList[Series[(1-x)/(1-x-2x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{1,2,0,-1},{1,0,2,2},40] (* Harvey P. Dale, Oct 20 2017 *)
A373644
a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-7*k,k).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 6, 8, 11, 18, 29, 44, 64, 96, 148, 228, 345, 519, 786, 1198, 1824, 2766, 4190, 6358, 9661, 14674, 22268, 33786, 51284, 77866, 118212, 179426, 272333, 413391, 627547, 952613, 1445995, 2194911, 3331793, 5057593, 7677250, 11653681, 17689720
Offset: 0
Showing 1-9 of 9 results.
Comments