cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A158945 Triangle read by rows, A158944 * an infinite matrix with A158943 (prefaced with a 1) as the right border: (1, 1, 1, 3, 5, 10, 19, 36, ...) and the rest zeros.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 2, 0, 3, 3, 0, 2, 0, 5, 0, 3, 0, 6, 0, 10, 4, 0, 3, 0, 10, 0, 19, 0, 4, 0, 9, 0, 20, 0, 36, 5, 0, 4, 0, 15, 0, 38, 0, 69, 0, 5, 0, 12, 0, 30, 0, 72, 0, 131, 6, 0, 5, 0, 20, 0, 57, 0, 138, 0, 250, 0, 6, 0, 15, 0, 40, 0, 108, 0, 262, 0, 476
Offset: 1

Views

Author

Gary W. Adamson, Mar 31 2009

Keywords

Comments

As a property of eigentriangles, sum of n-th row terms = rightmost term of next row. Right border = A158943 prefaced with a 1: (1, 1, 1, 3, 5, 10, 19, 36, 69, ...).

Examples

			First few rows of the triangle:
  1;
  0, 1;
  2, 0, 1;
  0, 2, 0,  3;
  3, 0, 2,  0,  5;
  0, 3, 0,  6,  0, 10;
  4, 0, 3,  0, 10,  0, 19;
  0, 4, 0,  9,  0, 20,  0,  36;
  5, 0, 4,  0, 15,  0, 38,   0,  69;
  0, 5, 0, 12,  0, 30,  0,  72,   0, 131;
  6, 0, 5,  0, 20,  0, 57,   0, 138,   0, 250;
  0, 6, 0, 15,  0, 40,  0, 108,   0, 262,   0, 476;
  7, 0, 6,  0, 25,  0, 76,   0, 207,   0, 500,   0, 907;
  ...
Row 5 = (3, 0, 2, 0, 5) = termwise products of (3, 0, 2, 0, 1) and (1, 1, 1, 3, 5); where (3, 0, 2, 0, 1) = row 5 of triangle A158944.
		

Crossrefs

Formula

Triangle read by rows, A158944 * an infinite matrix with A158943 (prefaced with a 1) as the right border: (1, 1, 1, 3, 5, 10, 19, 36, ...) and the rest zeros.

A052535 Expansion of (1-x)*(1+x)/(1-x-2*x^2+x^4).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 50, 95, 181, 345, 657, 1252, 2385, 4544, 8657, 16493, 31422, 59864, 114051, 217286, 413966, 788674, 1502555, 2862617, 5453761, 10390321, 19795288, 37713313, 71850128, 136886433, 260791401, 496850954, 946583628
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) = number of compositions of n with parts in {2,1,3,5,7,9,...}. The generating function follows easily from Theorem 1.1 of the Hoggatt et al. reference. Example: a(4)= 7 because we have 22, 31, 13, 211, 121, 112, and 1111. - Emeric Deutsch, Aug 17 2016.
Diagonal sums of A054142. - Paul Barry, Jan 21 2005
Equals INVERT transform of (1, 1, 1, 0, 1, 0, 1, 0, 1, ...). - Gary W. Adamson, Apr 27 2009
Number of tilings of a 4 X 2n rectangle by 4 X 1 tetrominoes. - M. Poyraz Torcuk, Dec 10 2021

Crossrefs

Cf. A275446.
Bisection of A003269 (odd part),

Programs

  • GAP
    a:=[1,1,2,4];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-4]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2)/( 1-x-2*x^2+x^4) )); // G. C. Greubel, May 09 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Prod(Z,Z)))))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-x-2x^2+x^4), {x, 0, 40}], x] (* or *)
    Table[Length@ Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {_, a_, _} /; And[EvenQ@ a, a != 2]]], 1], {n, 0, 40}]  (* Michael De Vlieger, Aug 17 2016 *)
    LinearRecurrence[{1,2,0,-1},{1,1,2,4},40] (* Harvey P. Dale, Apr 12 2018 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x^2)/(1-x-2*x^2+x^4)) \\ G. C. Greubel, May 09 2019
    
  • Sage
    ((1-x^2)/(1-x-2*x^2+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1 - x^2)/(1 - x - 2*x^2 + x^4).
a(n) = a(n-1) + 2*a(n-2) - a(n-4), with a(0)=1, a(1)=1, a(2)=2, a(3)=4.
a(n) = Sum_{alpha = RootOf(1-x-2*x^2+x^4)} (1/283)*(27 + 112*alpha + 9*alpha^2 -48*alpha^3)*alpha^(-n-1).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k, k). - Paul Barry, Jan 21 2005
a(n) = A158943(n) -A158943(n-2). - R. J. Mathar, Jan 13 2023

Extensions

More terms from James Sellers, Jun 05 2000

A297299 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 2 neighboring 1s.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 5, 1, 1, 1, 6, 9, 10, 8, 1, 1, 1, 9, 17, 21, 19, 13, 1, 1, 1, 13, 32, 50, 49, 36, 21, 1, 1, 1, 19, 60, 130, 157, 114, 69, 34, 1, 1, 1, 28, 113, 332, 600, 495, 266, 131, 55, 1, 1, 1, 41, 213, 840, 2161, 2816, 1574, 620, 250, 89, 1, 1, 1
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2017

Keywords

Comments

Table starts
.1.1..1...1....1.....1......1.......1........1.........1..........1...........1
.1.1..2...3....4.....6......9......13.......19........28.........41..........60
.1.1..3...5....9....17.....32......60......113.......213........401.........755
.1.1..5..10...21....50....130.....332......840......2128.......5408.......13772
.1.1..8..19...49...157....600....2161.....7479.....25639......88307......306281
.1.1.13..36..114...495...2816...14138....64406....288079....1310914.....6040052
.1.1.21..69..266..1574..13504...93906...551477...3159693...18792129...113862870
.1.1.34.131..620..5031..65521..629563..4738693..34652662..269300602..2142898994
.1.1.55.250.1446.16123.319835.4235806.40753529.379882818.3857849537.40317718384

Examples

			Some solutions for n=5 k=4
..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..1..1..0
..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..1..1..0. .1..1..0..0
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0
..0..0..1..1. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
..0..1..1..0. .0..0..0..0. .1..1..0..0. .0..0..0..0. .1..1..0..0
		

Crossrefs

Column 3 is A000045(n+1).
Column 4 is A158943(n+1).
Row 2 is A000930.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1)
k=3: a(n) = a(n-1) +a(n-2)
k=4: a(n) = a(n-1) +2*a(n-2) -a(n-4)
k=5: a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -2*a(n-4) for n>5
k=6: a(n) = 4*a(n-1) -8*a(n-3) -2*a(n-4) +4*a(n-5) +4*a(n-6) +a(n-7) -a(n-8)
k=7: [order 12] for n>14
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = a(n-1) +a(n-3)
n=3: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4) for n>6
n=4: [order 13] for n>16
n=5: [order 32] for n>37
n=6: [order 68] for n>76

A158944 Triangle by columns: the natural numbers interleaved with zeros in every column: (1, 0, 2, 0, 3, 0, 4, ...)

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 3, 0, 2, 0, 1, 0, 3, 0, 2, 0, 1, 4, 0, 3, 0, 2, 0, 1, 0, 4, 0, 3, 0, 2, 0, 1, 5, 0, 4, 0, 3, 0, 2, 0, 1, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1, 0, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 31 2009

Keywords

Comments

Eigensequence of the triangle = A158943: (1, 1, 3, 5, 10, 19, 36, 69, 131, ...)

Examples

			First few rows of the triangle =
  1;
  0, 1;
  2, 0, 1;
  0, 2, 0, 1;
  3, 0, 2, 0, 1;
  0, 3, 0, 2, 0, 1;
  4, 0, 3, 0, 2, 0, 1;
  0, 4, 0, 3, 0, 2, 0, 1;
  5, 0, 4, 0, 3, 0, 2, 0, 1;
  0, 5, 0, 4, 0, 3, 0, 2, 0, 1;
  6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1;
  0, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1;
  7, 0, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1;
  ...
The inverse array begins
   1;
   0,  1;
  -2,  0,  1;
   0, -2,  0,  1;
   1,  0, -2,  0,  1;
   0,  1,  0, -2,  0,  1;
   0,  0,  1,  0, -2,  0,  1;
   0,  0,  0,  1,  0, -2,  0,  1;
   0,  0,  0,  0,  1,  0, -2,  0,  1;
   ... - _Peter Bala_, Aug 15 2021
		

Crossrefs

Programs

  • Maple
    seq(seq((1/2)*(n - k + 2) * (1 + (-1)^(n-k))/2, k = 0..n), n = 0..10) # Peter Bala, Aug 15 2021

Formula

Triangle by columns: A027656: (1, 0, 2, 0, 3, 0, 4, 0, 5, ...) in every column.
From Peter Bala, Aug 15 2021: (Start)
T(n,k) = (1/2)*(n - k + 2) * (1 + (-1)^(n-k))/2 for 0 <= k <= n.
Double Riordan array (1/(1-x)^2; x, x) as defined in Davenport et al.
The m-th power of the array is the double Riordan array (1/(1 - x)^(2*m); x, x). Cf. A156663. (End)

A201947 Triangle T(n,k), read by rows, given by (1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,-1,1,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 2, 0, 3, 5, 1, -1, 5, 10, 4, -2, -1, 8, 20, 12, -4, -4, 0, 13, 38, 31, -4, -13, -2, 1, 21, 71, 73, 3, -33, -11, 3, 1, 34, 130, 162, 34, -74, -42, 6, 6, 0, 55, 235, 344, 128, -146, -130, 0, 24, 3, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2011

Keywords

Comments

Row-reversed variant of A123585. Row sums: 2^n.

Examples

			Triangle begins:
1
1, 1
2, 2, 0
3, 5, 1, -1
5, 10, 4, -2, -1
8, 20, 12, -4, -4, 0
13, 38, 31, -4, -13, -2, 1
21, 71, 73, 3, -33, -11, 3, 1
34, 130, 162, 34, -74, -42, 6, 6, 0
55, 235, 344, 128, -146, -130, 0, 24, 3, -1
		

Crossrefs

Cf. Columns: A000045, A001629, A129707.
Diagonals: A010892, A099254, Antidiagonal sums: A158943.

Formula

G.f.: 1/(1-(1+y)*x+(y+1)*(y-1)*x^2).
T(n,0) = A000045(n+1).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-2) with T(0,0)= 1 and T(n,k)= 0 if n
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A090591(n), (-1)^n*A106852(n), A000007(n), A000045(n+1), A000079(n), A057083(n), A190966(n+1) for n = -3, -2, -1, 0, 1, 2, 3 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A010892(n), A000079(n), A030195(n+1), A180222(n+2) for x = 0, 1, 2, 3 respectively.

A373653 a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-5*k-1,k).

Original entry on oeis.org

1, 1, 1, 4, 7, 16, 34, 71, 153, 322, 686, 1455, 3088, 6558, 13917, 29548, 62721, 133146, 282646, 599998, 1273690, 2703794, 5739647, 12184181, 25864698, 54905857, 116554700, 247423522, 525233175, 1114970351, 2366870474, 5024416818, 10665883415, 22641646338
Offset: 0

Author

Seiichi Manyama, Jun 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(3*n-5*k-1, k));

Formula

G.f.: 1 / (1 - x/(1 - x^2)^3).
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 6.
Showing 1-6 of 6 results.