A251072
Number A(n,k) of tilings of a 3k X n rectangle using 3n k-ominoes of shape I; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 41, 1, 1, 1, 1, 1, 19, 281, 1, 1, 1, 1, 1, 1, 57, 1183, 1, 1, 1, 1, 1, 1, 26, 121, 6728, 1, 1, 1, 1, 1, 1, 1, 75, 783, 31529, 1, 1, 1, 1, 1, 1, 1, 34, 154, 2861, 167089, 1, 1, 1, 1, 1, 1, 1, 1, 95, 269, 8133, 817991, 1, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 13, 1, 1, 1, 1, 1, 1, ...
1, 1, 41, 19, 1, 1, 1, 1, 1, ...
1, 1, 281, 57, 26, 1, 1, 1, 1, ...
1, 1, 1183, 121, 75, 34, 1, 1, 1, ...
1, 1, 6728, 783, 154, 95, 43, 1, 1, ...
1, 1, 31529, 2861, 269, 190, 117, 53, 1, ...
1, 1, 167089, 8133, 1732, 325, 229, 141, 64, ...
Columns k=0+1,2-10 give:
A000012,
A028468,
A251073,
A251074,
A247218,
A251075,
A251076,
A251077,
A251078,
A251079.
-
b:= proc(n, l) option remember; local d, k; d:= nops(l)/3;
if n=0 then 1
elif min(l[])>0 then (m->b(n-m, map(x->x-m, l)))(min(l[]))
else for k while l[k]>0 do od;
`if`(n2*d+1 or max(l[k..k+d-1][])>0, 0,
b(n, [l[1..k-1][], 1$d, l[k+d..3*d][]]))
fi
end:
A:= (n, k)-> `if`(k=0, 1, b(n, [0$3*k])):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, l_List] := b[n, l] = Module[{d = Length[l]/3, k}, Which[n == 0, 1, Min[l] > 0, Function[{m}, b[n-m, l-m]][Min[l]], True, For[k=1, l[[k]] > 0 , k++]; If[n d]]] + If[d == 1 || k > 2d + 1 || Max[l[[k ;; k + d - 1]]] > 0, 0, b[n, Join[l[[1 ;; k-1]], Array[1&, d], l[[k+d ;; 3*d]]]]]]]; A[n_, k_] := If[k == 0, 1, b[n, Array[0&, 3k]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 30 2015, after Alois P. Heinz *)
A052535
Expansion of (1-x)*(1+x)/(1-x-2*x^2+x^4).
Original entry on oeis.org
1, 1, 2, 4, 7, 14, 26, 50, 95, 181, 345, 657, 1252, 2385, 4544, 8657, 16493, 31422, 59864, 114051, 217286, 413966, 788674, 1502555, 2862617, 5453761, 10390321, 19795288, 37713313, 71850128, 136886433, 260791401, 496850954, 946583628
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, Grand zigzag knight's paths, arXiv:2402.04851 [math.CO], 2024. See p. 18.
- V. E. Hoggatt, Jr. and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 465
- Todd Mullen, On Variants of Diffusion, Dalhousie University (Halifax, NS Canada, 2020).
- Todd Mullen, Richard Nowakowski, and Danielle Cox, Counting Path Configurations in Parallel Diffusion, arXiv:2010.04750 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (1,2,0,-1).
-
a:=[1,1,2,4];; for n in [5..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-4]; od; a; # G. C. Greubel, May 09 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2)/( 1-x-2*x^2+x^4) )); // G. C. Greubel, May 09 2019
-
spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Prod(Z,Z)))))},unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
-
CoefficientList[Series[(1-x^2)/(1-x-2x^2+x^4), {x, 0, 40}], x] (* or *)
Table[Length@ Flatten[Map[Permutations, DeleteCases[IntegerPartitions@ n, {_, a_, _} /; And[EvenQ@ a, a != 2]]], 1], {n, 0, 40}] (* Michael De Vlieger, Aug 17 2016 *)
LinearRecurrence[{1,2,0,-1},{1,1,2,4},40] (* Harvey P. Dale, Apr 12 2018 *)
-
my(x='x+O('x^40)); Vec((1-x^2)/(1-x-2*x^2+x^4)) \\ G. C. Greubel, May 09 2019
-
((1-x^2)/(1-x-2*x^2+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
A236582
The number of tilings of an 8 X n floor with 1 X 4 tetrominoes.
Original entry on oeis.org
1, 1, 1, 1, 7, 15, 25, 37, 100, 229, 454, 811, 1732, 3777, 7858, 15339, 31273, 65536, 136600, 276535, 562728, 1159942, 2400783, 4918159, 10052140, 20627526, 42480474, 87254743, 178855138, 366854368
Offset: 0
-
p := (1-x)^3*(x+1)^3*(x^2+1)^3*(x^6-x^4-x^3-x^2+1) ;
q := -x^2 -13*x^10 -5*x^18 +8*x^6 -x -x^20 -9*x^4 +16*x^8 -13*x^12 -2*x^19 +1 +10*x^14 +5*x^7 +6*x^15 -6*x^11 +x^22 +6*x^16 +x^17 +2*x^5 -2*x^13 ;
taylor(p/q,x=0,30) ;
gfun[seriestolist](%) ;
Showing 1-3 of 3 results.
Comments