A247223 Expansion of f(-x^5, -x^7) in powers of x where f() is a Ramanujan theta function.
1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 - x^5 - x^7 + x^22 + x^26 - x^51 - x^57 + x^92 + x^100 - x^145 + ... G.f. = q - q^121 - q^169 + q^529 + q^625 - q^1225 - q^1369 + q^2209 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[q^5,q^12]*QPochhammer[q^7,q^12] *QPochhammer[q^12,q^12], {q, 0, n}]; (* G. C. Greubel, Dec 08 2017 *)
-
PARI
{a(n) = my(m = 24*n + 1); if( issquare(m, &m) && (m%12==1 || m%12==11), (-1)^((m+6) \ 12))};
Formula
Euler transform of period 12 sequence [ 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, -1, ...]. - Michael Somos, Jan 10 2015
G.f.: Product_{k>0} (1 - x^(12*k)) * (1 - x^(12*k - 5)) * (1 - x^(12*k - 7)).