A247246 Differences of consecutive Achilles numbers.
36, 92, 88, 104, 40, 68, 148, 27, 125, 64, 104, 4, 153, 27, 171, 29, 20, 196, 232, 144, 56, 312, 280, 108, 188, 199, 113, 67, 189, 72, 344, 16, 112, 232, 268, 63, 45, 392, 292, 32, 76, 8, 80, 587, 50, 147, 456, 184, 288, 488, 115, 772, 137, 36, 40, 212, 248
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Carlos Rivera, Problem 53, The Prime Puzzles and Problems Connection.
- Eric Weisstein's World of Mathematics, Achilles number.
- Wikipedia, Achilles number.
Programs
-
Maple
f:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc: Achilles:= select(f, [$1..10^5]): seq(Achilles[i+1]-Achilles[i],i=1..nops(Achilles)-1); # Robert Israel, Dec 13 2014
-
Mathematica
achillesQ[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Min[ee] > 1 && GCD @@ ee == 1]; Select[Range[10^4], achillesQ] // Differences (* Jean-François Alcover, Sep 26 2020 *)
-
PARI
isA052486(n) = { n>1 & vecmin(factor(n)[, 2])>1 & !ispower(n); } lista(nn) = {v = select(n->isA052486(n), vector(nn, i, i)); vector(#v-1, n, v[n+1] - v[n]);} \\ Michel Marcus, Nov 29 2014
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A247246(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f, kmin=0, kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l = n+x+1, 0 j = isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) c -= squarefreepi(integer_nthroot(x,3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())) return c return -(a:=bisection(f,n,n))+bisection(lambda x:f(x)+1,a,a) # Chai Wah Wu, Sep 10 2024
Comments