cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247246 Differences of consecutive Achilles numbers.

Original entry on oeis.org

36, 92, 88, 104, 40, 68, 148, 27, 125, 64, 104, 4, 153, 27, 171, 29, 20, 196, 232, 144, 56, 312, 280, 108, 188, 199, 113, 67, 189, 72, 344, 16, 112, 232, 268, 63, 45, 392, 292, 32, 76, 8, 80, 587, 50, 147, 456, 184, 288, 488, 115, 772, 137, 36, 40, 212, 248
Offset: 1

Views

Author

Eric Chen, Nov 28 2014

Keywords

Comments

29 is the first prime in this sequence, and it equals 1352 - 1323. Clearly, if the difference is prime, then these two Achilles numbers must be relatively prime, so primes appear in this sequence rarely. However, are there infinitely many n such that a(n) is prime?
The number 1 can also appear in this sequence, because it equals 5425069448 - 5425069447 = (2^3 * 26041^2) - (7^3 * 41^2 * 97^2). Does every natural number appear in this sequence? If so, do they appear infinitely often?

Crossrefs

Programs

  • Maple
    f:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc:
    Achilles:= select(f, [$1..10^5]):
    seq(Achilles[i+1]-Achilles[i],i=1..nops(Achilles)-1); # Robert Israel, Dec 13 2014
  • Mathematica
    achillesQ[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Min[ee] > 1 && GCD @@ ee == 1];
    Select[Range[10^4], achillesQ] // Differences (* Jean-François Alcover, Sep 26 2020 *)
  • PARI
    isA052486(n) = { n>1 & vecmin(factor(n)[, 2])>1 & !ispower(n); }
    lista(nn) = {v = select(n->isA052486(n), vector(nn, i, i)); vector(#v-1, n, v[n+1] - v[n]);} \\ Michel Marcus, Nov 29 2014
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A247246(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x+1, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length()))
            return c
        return -(a:=bisection(f,n,n))+bisection(lambda x:f(x)+1,a,a) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A052486(n+1) - A052486(n).