cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247247 Triangular numbers that are the sum of 2 consecutive terms of A130518.

Original entry on oeis.org

0, 1, 3, 21, 120, 300, 2080, 11781, 29403, 203841, 1154440, 2881200, 19974360, 113123361, 282328203, 1957283461, 11084934960, 27665282700, 191793804840, 1086210502741, 2710915376403, 18793835590881, 106437544333680, 265642041604800, 1841604094101520
Offset: 1

Views

Author

J. M. Bergot, Nov 28 2014

Keywords

Comments

What will be the distribution of these triangular numbers?
Will they mostly be multiples of three?
From Hiroaki Yamanouchi, Dec 04 2014: (Start)
a(n) is some nonnegative x in the integer solutions (x, y) of
(1) (6*x + 3)^2 - 6*(6*y + 4)^2 = -15,
(2) (6*x + 3)^2 - 6*(6*y + 8)^2 = -15 or
(3) (2*x + 1)^2 - 6*(2*y + 2)^2 = 1.
(End)

Examples

			A130518(8)+A130518(9) = 9+12 = 21 = A000217(6), so 21 is in the sequence.
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
    local x;
      x:= ceil((n^2+2*n)/3);
    if issqr(1+8*x) then x else NULL fi
    end proc:
    seq(f(n),n=0..10^6); # Robert Israel, Nov 30 2014
  • Mathematica
    a247247[n_Integer] := Module[{a130518, a000217, s},
      a130518[m_] := Table[i, {i, 0, m}, {3}] // Flatten // Accumulate;
      a000217[m_] := Accumulate[Range[m]];
      s[m_] :=
       a130518[m] + Most@PrependTo[a130518[m], 0] // DeleteDuplicates;
    Intersection[s[n], a000217[n]]]; a247247[50000000] (* Michael De Vlieger, Nov 30 2014 after Jean-François Alcover at A130518 and Harvey P. Dale at A000217 *)

Formula

Empirical G.f.: x^2*(x+1)*(x^4+2*x^3+19*x^2+2*x+1)/((1-x)*(x^2+x+1)*(x^6-98*x^3+1)). - Robert Israel, Nov 30 2014

Extensions

a(7)-a(13) from Michel Marcus, Nov 28 2014
a(14)-a(24) from Michael De Vlieger, Nov 30 2014
a(25) from Hiroaki Yamanouchi, Dec 04 2014