A247270 Let k == 1 or 5 (mod 6) (A007310). a(n) is the greatest number of the initial values of k such that k^2+6*n-4 divided by the maximal possible power of 3 takes only prime values or 1.
6, 10, 6, 8, 2, 7, 6, 3, 1, 2, 4, 5, 0, 1, 4, 15, 2, 0, 3, 2, 1, 9, 3, 1, 0, 3, 17, 0, 1, 2, 2, 4, 0, 1, 1, 7, 5, 0, 0, 2, 3, 1, 0, 1, 2, 0, 3, 0, 1, 2, 6, 2, 0, 1, 2, 1, 1, 0, 1, 0, 0, 7, 0, 2, 2, 2, 0, 1, 1, 1, 25, 0, 0, 0, 2, 5, 1, 0, 1, 2, 0, 3, 0, 1, 0, 2
Offset: 1
Keywords
Examples
For n=1, we have 1,1,17,41,19,97,121. So a(1)=6.
Comments