A247286 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n having k weak peaks.
1, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 7, 4, 1, 1, 16, 17, 11, 5, 1, 1, 32, 41, 30, 16, 6, 1, 1, 64, 98, 82, 48, 22, 7, 1, 1, 128, 232, 220, 144, 72, 29, 8, 1, 1, 256, 544, 581, 423, 233, 103, 37, 9, 1, 1, 512, 1264, 1512, 1216, 738, 356, 142, 46, 10, 1
Offset: 0
Examples
Row 3 is 1,2,1 because the Motzkin paths hhh, hu*d, u*dh, and u*h*d have 0, 1, 1, and 2 weak peaks (shown by the stars). Triangle starts: 1; 1; 1,1; 1,2,1; 1,4,3,1; 1,8,7,4,1;
Links
- Alois P. Heinz, Rows n = 0..141, flattened
Programs
-
Maple
eq := G = 1+z*G+z^2*(G-1/(1-z)+t/(1-t*z))*G: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 14 do P[n] := sort(expand(coeff(Gser, z, n))) end do: 1; for n to 14 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form # second Maple program: b:= proc(x, y, t, c) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, expand(b(x-1, y-1, false, 0)*z^c+b(x-1, y, t, `if`(t, c+1, 0))+ b(x-1, y+1, true, 1)))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, false, 0)): seq(T(n), n=0..14); # Alois P. Heinz, Sep 14 2014
-
Mathematica
b[x_, y_, t_, c_] := b[x, y, t, c] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y-1, False, 0]*z^c + b[x-1, y, t, If[t, c+1, 0]] + b[x-1, y+1, True, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, False, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
Formula
The g.f. G(t,z) satisfies G = 1 + z*G + z^2*(G - 1/(1-z) + t/(1-t*z))*G.
Comments