A247291 Number of weighted lattice paths B(n) having no uhd strings.
1, 1, 2, 4, 7, 15, 32, 69, 154, 346, 786, 1806, 4180, 9745, 22865, 53938, 127865, 304447, 727733, 1745736, 4201350, 10140975, 24544000, 59551327, 144822097, 352940719, 861839226, 2108381480, 5166749329, 12681855551, 31174671514, 76742344774
Offset: 0
Keywords
Examples
a(4)=7 because we have hhhh, hhH, hHh, Hhh, HH, hud, and udh.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
Programs
-
Maple
eq := G = 1+z*G+z^2*G+z^3*(G-z)*G: G := RootOf(eq, G): Gser := series(G, z = 0, 37): seq(coeff(Gser, z, n), n = 0 .. 35); # second Maple program: b:= proc(n, y, t) option remember; `if`(y<0 or y>n or t=3, 0, `if`(n=0, 1, b(n-1, y, `if`(t=1, 2, 0))+`if`(n>1, b(n-2, y, 0)+b(n-2, y+1, 1), 0)+b(n-1, y-1, `if`(t=2, 3, 0)))) end: a:= n-> b(n, 0$2): seq(T(n), n=0..40); # Alois P. Heinz, Sep 16 2014
-
Mathematica
b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n || t == 3, 0, If[n == 0, 1, b[n-1, y, If[t == 1, 2, 0]] + If[n>1, b[n-2, y, 0] + b[n-2, y+1, 1], 0] + b[n-1, y-1, If[t == 2, 3, 0]]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
Formula
G.f. G = G(z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z).
D-finite with recurrence +(n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +3*(n-3)*a(n-4) +(-2*n+9)*a(n-5) +2*(-n+6)*a(n-6) +(n-9)*a(n-8)=0. - R. J. Mathar, Sep 29 2021
Comments