cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247293 Number of weighted lattice paths B(n) having no uHd strings.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 35, 77, 172, 391, 899, 2085, 4877, 11490, 27236, 64916, 155483, 374027, 903286, 2189219, 5322965, 12980660, 31740404, 77804885, 191160040, 470662449, 1161123461, 2869754099, 7104856781, 17618234456, 43754467510, 108816781175
Offset: 0

Views

Author

Emeric Deutsch, Sep 16 2014

Keywords

Comments

B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
a(n) = A247292(n,0).

Examples

			a(6)=35 because among the 37 (=A004148(7)) members of B(6) only huHd and uHdh contain uHd.
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G+z^3*(G-z^2)*G: G := RootOf(eq, G): Gser := series(G, z = 0, 37): seq(coeff(Gser, z, n), n = 0 .. 35);
    # second Maple program:
    b:= proc(n, y, t) option remember; `if`(y<0 or y>n or t=3, 0,
          `if`(n=0, 1, b(n-1, y, 0)+`if`(n>1, b(n-2, y, `if`(t=1,
          2, 0))+b(n-2, y+1, 1), 0)+b(n-1, y-1, `if`(t=2, 3, 0))))
        end:
    a:= n-> b(n, 0$2):
    seq(T(n), n=0..40);  # Alois P. Heinz, Sep 16 2014
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = If[y<0 || y>n || t == 3, 0, If[n == 0, 1, b[n-1, y, 0] + If[n>1, b[n-2, y, If[t == 1, 2, 0]] + b[n-2, y+1, 1], 0] + b[n-1, y-1, If[t == 2, 3, 0]]]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)

Formula

G.f. G = G(z) satisfies G = 1 + z*G + z^2*G + z^3*G*(G - z^2).
D-finite with recurrence +(n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +(n-3)*a(n-4) +(2*n-9)*a(n-5) +2*(-n+6)*a(n-6) +(-2*n+15)*a(n-7) +(n-12)*a(n-10)=0. - R. J. Mathar, Jul 26 2022