A247049
Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,0) to (n,k), where 0 >= k <= 2, consisting of segments given by the vectors (1,1), (1,2), (1,-1).
Original entry on oeis.org
1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 8, 8, 8, 13, 13, 13, 21, 21, 21, 34, 34, 34, 55, 55, 55, 89, 89, 89, 144, 144, 144, 233, 233, 233, 377, 377, 377, 610, 610, 610, 987, 987, 987, 1597, 1597, 1597, 2584, 2584, 2584, 4181, 4181, 4181
Offset: 0
First 10 columns:
0 .. 1 .. 1 .. 2 .. 3 .. 5 .. 8 .. 13 .. 21 .. 34
0 .. 1 .. 1 .. 2 .. 3 .. 5 .. 8 .. 13 .. 21 .. 34
1 .. 0 .. 1 .. 1 .. 2 .. 3 .. 5 .. 8 ... 13 .. 21
T(4,1) counts these 3 paths, given as vector sums applied to (0,0):
(1,2) + (1,-1) + (1,1) + (1,-1);
(1,1) + (1,-1) + (1,2) + (1,-1);
(1,2) + (1,-1) + (1,-1) + (1,1).
Partial sums of second components in each vector sum give the 3 integer strings described in Comments: (0,2,1,2,1), (0,1,0,2,1), (0,2,1,0,1).
-
t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[n_, 0] := t[n, 0] = t[n - 1, 1]; t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 2]; t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1]; TableForm[ Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]] (* array *)
u = Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* sequence *)
A247309
Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 <= k <= 2, consisting of segments given by the vectors (1,1), (1,0), (1,-1), (1,-2).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 2, 3, 3, 5, 8, 8, 13, 21, 21, 34, 55, 55, 89, 144, 144, 233, 377, 377, 610, 987, 987, 1597, 2584, 2584, 4181, 6765, 6765, 10946, 17711, 17711, 28657, 46368, 46368, 75025, 121393, 121393, 196418, 317811, 317811, 514229, 832040, 832040
Offset: 0
First 10 columns:
0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584
0 .. 1 .. 3 .. 8 .. 21 .. 55 .. 144 .. 377 .. 987 ... 2584
1 .. 1 .. 2 .. 5 .. 13 .. 34 .. 89 ... 233 .. 610 ... 1597
T(2,2) counts these 3 paths, given as vector sums applied to (0,0):
(1,2) + (1,0); (1,1) + (1,1); (1,0) + (1,2).
-
t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[1, 2] = 1;
t[n_, 0] := t[n, 0] = t[n - 1, 0] + t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2];
t[n_, 2] := t[n, 2] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2]
TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]] (* array *)
Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* A247309 *)
A247311
Rectangular array read upwards by columns: T = T(n,k) = number of paths from (0,1) to (n,k), where 0 <= k <= 2, consisting of segments given by the vectors (1,1), (1,0), (1,-1).
Original entry on oeis.org
1, 0, 0, 1, 1, 0, 2, 2, 1, 4, 5, 3, 9, 12, 8, 21, 29, 20, 50, 70, 49, 120, 169, 119, 289, 408, 288, 697, 985, 696, 1682, 2378, 1681, 4060, 5741, 4059, 9801, 13860, 9800, 23661, 33461, 23660, 57122, 80782, 57121, 137904, 195025, 137903, 332929, 470832, 332928
Offset: 0
First 10 columns:
0 .. 0 .. 1 .. 3 .. 8 ... 20 .. 49 .. 119 .. 288 .. 696
0 .. 1 .. 2 .. 5 .. 12 .. 29 .. 70 .. 169 .. 408 .. 985
1 .. 1 .. 2 .. 4 .. 9 ... 21 .. 50 .. 120 .. 289 .. 697
T(3,2) counts these 3 paths, given as vector sums applied to (0,0):
(1,1) + (1,1) + (1,0); (1,1) + (1,0) + (1,1); (1,0) + (1,1) + (1,1).
-
t[0, 0] = 1; t[0, 1] = 0; t[0, 2] = 0; t[1, 2] = 0;
t[n_, 0] := t[n, 0] = t[n - 1, 0] + t[n - 1, 1];
t[n_, 1] := t[n, 1] = t[n - 1, 0] + t[n - 1, 1] + t[n - 1, 2];
t[n_, 2] := t[n, 2] = t[n - 1, 1] + t[n - 1, 2]
TableForm[Reverse[Transpose[Table[t[n, k], {n, 0, 12}, {k, 0, 2}]]]] (* array *)
Flatten[Table[t[n, k], {n, 0, 20}, {k, 0, 2}]] (* A247311 *)
Showing 1-3 of 3 results.
Comments