A247335 The curvature of touching circles inscribed in a special way in the larger segment of circle of radius 10/9 divided by a chord of length 4/3.
1, 10, 361, 13690, 519841, 19740250, 749609641, 28465426090, 1080936581761, 41047124680810, 1558709801289001, 59189925324301210, 2247658452522156961, 85351831270517663290, 3241121929827149048041, 123077281502161146162250
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..600
- Kival Ngaokrajang, Illustration of initial terms
- Wolfdieter Lang, Curvature computation for A247335 and A247512.
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Circular Segment, Forum Geometricorum, Vol. 18 (2018), 47-55.
- Giovanni Lucca, Circle chains inside the arbelos and integer sequences, Int'l J. Geom. (2023) Vol. 12, No. 1, 71-82.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (39,-39,1).
Programs
-
Magma
I:=[39,-39,1]; [n le 3 select I[n] else Self(n-1) - 10*Self(n-2) + 361*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
Mathematica
LinearRecurrence[{39,-39,1}, {1, 10, 361}, 50] (* or *) Table[Round[((19 + 6*Sqrt[10])^(-n)*(1 + (19 + 6*Sqrt[10])^n)^2)]/4, {n, 0, 30}] (* G. C. Greubel, Dec 20 2017 *)
-
PARI
{ r=0.9;print1(1,", ");r1=r; for (n=1,50, if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2)); ac=sqrt(ab^2-r^2); if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r); b=acos(r/ab)-z; r=r*(1-cos(b))/(1+cos(b)); an=floor(9/(10*r)); print1(if(an>9,an,10),", ") ) }
-
PARI
Vec(-(10*x^2-29*x+1)/((x-1)*(x^2-38*x+1)) + O(x^20)) \\ Colin Barker, Mar 03 2016
Formula
Conjectures from Colin Barker, Sep 18 2014: (Start)
a(n) = 39*a(n-1) - 39*a(n-2) + a(n-3).
G.f.: -(10*x^2-29*x+1) / ((x-1)*(x^2-38*x+1)). (End)
From Wolfdieter Lang, Sep 30 2014 (Start)
See the W. Lang link for proofs of the following statements.
One step nonlinear recurrence: a(n) = -9 + 19*a(n-1) + 60*sqrt(a(n-1)*(a(n-1) - 1)/10), n>=1, with a(0) = 1.
a(n) = (1 + A078986(n))/2 = (2 + S(n, 38) - S(n-2, 38))/4 =
(1 + S(n, 38) -19*S(n-1, 38))/2 for n>=0, with Chebyshev's S-polynomials (see A049310). S(n, 38) = A078987(n).
The G.f. conjectured by Colin Barker above follows from the one for Chebyshev's T(n, 19) = A078986(n): (1/(1-x) + (1-19*x)/(1-38*x+x^2))/2 = (1-29*x+10*x^2)/((1-x)* (1-38*x+x^2)).
The four term recurrence conjectured by Colin Barker above follows from the expanded g.f. denominator: (1-x)* (1-38*x+x^2) = 1- 39*x + 39*x^2 - x^3.
(End)
a(n) = ((19+6*sqrt(10))^(-n)*(1+(19+6*sqrt(10))^n)^2)/4. - Colin Barker, Mar 03 2016
Comments