A247512
The curvature (rounded down) of touching circles inscribed in a special way in the smaller segment of circle of radius 10/9 divided by a chord of length 4/3.
Original entry on oeis.org
9, 10, 13, 20, 35, 64, 119, 224, 428, 821, 1576, 3030, 5828, 11215, 21584, 41545, 79968, 153931, 296306, 570371, 1097933, 2113463, 4068308, 7831289, 15074840, 29018319, 55858826, 107525476, 206981225, 398428629, 766955420, 1476351286, 2841903278, 5470523390
Offset: 0
The first curvatures r(n) are 9, 10, 121/9, 1690/81, 25921/729, 420250/6561, 7027801/59049, 119508490/531441,... - _Wolfdieter Lang_, Sep 30 2014
-
r[0] := 9; r[n_] := r[n] = (11*r[n - 1] - 9 + 20*Sqrt[(r[n - 1] - 9)*r[n - 1]/10])/9; Table[Floor[r[n]], {n, 0, 30}] (* G. C. Greubel, Dec 20 2017 *)
-
{
r=0.1;print1(floor(9/(10*r)),", ");r1=r;
for (n=1,50,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b));
print1(floor(9/(10*r)),", ")
)
}
Edited: Keyword easy and Chebyshev index link added.
Wolfdieter Lang, Sep 30 2014
A249457
The numerator of curvatures of touching circles inscribed in a special way in the larger segment of a unit circle divided by a chord of length sqrt(84)/5.
Original entry on oeis.org
10, 100, 2890, 96100, 3237610, 109202500, 3683712490, 124263300100, 4191798484810, 141402777864100, 4769968258260490, 160906295771812900, 5427884341892493610, 183099910962324064900, 6176546013641762558890, 208354665265158340802500, 7028469704892605715408010
Offset: 0
Cf.
A005032,
A049310,
A078986,
A097315,
A169364,
A240926,
A247335,
A247512,
A248834,
A249458,
A249862.
-
I:=[10,100,2890]; [n le 3 select I[n] else 37*Self(n-1) - 111*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
LinearRecurrence[{37, -111, 27},{10, 100, 2890},16] (* Ray Chandler, Aug 11 2015 *)
CoefficientList[Series[10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
-
{
r=0.7;dn=7;print1(round(dn/r),", ");r1=r;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b)); dn=dn*3;
print1(round(dn/r),", ");
)
}
-
x='x+O('x^30); Vec(10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x))) \\ G. C. Greubel, Dec 20 2017
Edited. Name and comment small changes, keyword easy added. -
Wolfdieter Lang, Nov 07 2014
A248834
The numerator of curvature of touching circles inscribed in a special way in the smaller segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).
Original entry on oeis.org
15, 25, 245, 3025, 39605, 525625, 6997445, 93219025, 1242045605, 16549536025, 220514700245, 2938258798225, 39150987330005, 521669482807225, 6951013841444645, 92619168339300625, 1234109231890228805, 16443956730548563225, 219108411138085022645, 2919522145350504838225
Offset: 0
-
{
r=0.4;print1(round(6/r),", ");r1=r;dn=1;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b));
print1(round((6/r)*dn),", ");
dn=dn*3
)
}
A249458
The numerators of curvatures of touching circles inscribed in a special way in the smaller segment of unit circle divided by a chord of length sqrt(84)/5.
Original entry on oeis.org
10, 100, 1690, 36100, 835210, 19802500, 472931290, 11318832100, 271066588810, 6492762648100, 155527144782490, 3725543446072900, 89243180863948810, 2137770243127864900, 51209104645650371290, 1226685938180259902500
Offset: 0
Cf.
A240926,
A078986,
A097315,
A247512,
A247335,
A247512,
A248834,
A169634,
A249457,
A049310,
A249863,
A249864.
-
I:=[10, 100, 1690]; [n le 3 select I[n] else 33*Self(n-1) - 231*Self(n-2) + 343*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
LinearRecurrence[{33, -231, 343},{10, 100, 1690},16] (* Ray Chandler, Aug 11 2015 *)
CoefficientList[Series[10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
-
{
r=0.3;dn=3;print1(round(dn/r),", ");r1=r;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b)); dn=dn*7;
print1(round(dn/r),", ");
)
}
-
x='x+O('x^30); Vec(10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x))) \\ G. C. Greubel, Dec 20 2017
Edited. In name and comment small changes, keyword easy and crossrefs added. -
Wolfdieter Lang, Nov 08 2014
A246643
A sequence used in the touching circle problem described in A247512.
Original entry on oeis.org
1, 10, 121, 1690, 25921, 420250, 7027801, 119508490, 2050368961, 35341836010, 610665665401, 10564982353210, 182902930753921, 3167536046903290, 54865571909148121, 950426408617182250, 16464857882672822401, 285238628280432626890, 4941562979309619843961
Offset: 0
-
I:=[1, 10, 121]; [n le 3 select I[n] else 31*Self(n-1) - 279*Self(n-2) + 729*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
CoefficientList[Series[(1 - 21*x + 90*x^2)/((1 - 9*x)*(1 - 22*x + 81*x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{31,-279,729}, {1, 10, 121}, 50] (* G. C. Greubel, Dec 20 2017 *)
-
Vec(-(6*x-1)*(15*x-1)/((9*x-1)*(81*x^2-22*x+1)) + O(x^100)) \\ Colin Barker, Sep 30 2014
A248833
The curvature of touching circles inscribed in a special way in the larger segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).
Original entry on oeis.org
10, 25, 160, 1225, 9610, 75625, 595360, 4687225, 36902410, 290532025, 2287353760, 18008298025, 141779030410, 1116223945225, 8788012531360, 69187876305625, 544714997913610, 4288532107003225, 33763541858112160, 265819802757894025, 2092794880205040010, 16476539238882426025
Offset: 0
-
I:=[10,25,160]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 29 2014
-
CoefficientList[Series[- 5 (5 x^2 - 13 x + 2)/((x - 1) (x^2 - 8 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2014 *)
LinearRecurrence[{9,-9,1}, {10,25,160}, 30] (* G. C. Greubel, Dec 20 2017 *)
-
{
r=0.6;print1(round(6/r),", ");r1=r;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b));
print1(round(6/r),", ");
)
}
-
Vec(-5*(5*x^2-13*x+2)/((x-1)*(x^2-8*x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
Showing 1-6 of 6 results.
Comments