cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A249122 a(n) = floor(n / lpf(n^2 + 1)) where lpf(n^2 + 1) is the smallest prime divisor of n^2 + 1.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 1, 4, 0, 5, 2, 6, 0, 7, 0, 8, 3, 9, 0, 10, 4, 11, 0, 12, 0, 13, 5, 14, 1, 15, 6, 16, 2, 17, 0, 18, 7, 19, 0, 20, 8, 21, 3, 22, 1, 23, 9, 24, 1, 25, 10, 26, 0, 27, 0, 28, 11, 29, 4, 30, 12, 31, 3, 32, 0, 33, 13, 34, 5, 35, 14, 36, 0, 37, 1
Offset: 1

Views

Author

Michel Lagneau, Oct 21 2014

Keywords

Comments

a(n) = floor(n / A089120(n)).
a(A002496(n)) = 0 and a(A247340(n)) = 1 where A002496 are the primes of form m^2 + 1 and A247340(n) = {3, 8, 30, 46, 50, 76, ...} are the numbers m such that m^2 + 1 = p*q, p and q primes => p | a^2+1 and q | b^2+1 for some a,b < m.

Examples

			a(8) = 1 because 30^2 + 1 = 17*53 and floor(30/17) = 1.
Or a(8) = a(A247340(2)) = 1.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
       for n from 1 to 200 do:
        p:=n^2+1:x:=factorset(p):d:=floor(n/x[1]):
        printf(`%d, `, d):
       od:
  • Mathematica
    Table[Floor[n/ FactorInteger[n^2+1][[ 1, 1]]], {n, 100}]
  • PARI
    a(n) = n\factor(n^2+1)[1, 1]; \\ Michel Marcus, Oct 25 2014
Showing 1-1 of 1 results.