A247342 Let b_k=3...3 consist of k>=1 3's. Then a(n) is the smallest k such that the odd part (A000265) of concatenation b_k 2^n is prime, or a(n)=0 if there is no such prime.
1, 2, 1, 1, 1, 1, 4, 3, 2, 1, 3, 1, 1, 6, 1, 1, 1, 3, 1, 15, 29, 5, 1, 2, 3, 6, 1, 6, 20, 6, 3, 50, 3, 22, 8, 5, 5, 1, 84, 8, 7, 36, 3, 6, 7, 20, 6, 6, 8, 1, 6, 3, 2, 38, 1, 5, 3, 2, 5, 16, 1, 12, 13, 7, 1, 4, 16, 5, 32, 1, 6, 13, 4, 150, 7, 29, 17, 9, 12, 34
Offset: 0
Examples
2^0=1 and already 31 is prime. So a(0)=1; 2^1=2, but odd part of 32 is 1 (nonprime); then consider odd part of 332. It is 83 that is prime. So a(1)=2.
Links
- Robert Israel, Table of n, a(n) for n = 0..442
Programs
-
Maple
f:= proc(n) local m,d,k,x; m:= 2^n; d:=ilog10(m); for k from 1 do x:= (10^k-1)/3*10^(d+1)+m; if isprime(x/2^padic:-ordp(x,2)) then return k fi od end proc: map(f, [$0..100]); # Robert Israel, Oct 30 2016
-
PARI
a(n) = {k = 0; while (! ((val = eval(concat(Str((10^k-1)/3), Str(2^n)))) && isprime(val/2^valuation(val, 2))), k++); k;} \\ Michel Marcus, Sep 15 2014
Extensions
More terms from Michel Marcus, Sep 15 2014
Comments