A247344 a(n) = 1 for n <= 4; a(n) = 25*a(n-1) - 200*a(n-2) + 800*a(n-3) - 1600*a(n-4) + 1280*a(n-5) otherwise.
1, 1, 1, 1, 1, 305, 7905, 137105, 2090305, 30673905, 446213025, 6483539025, 94216001025, 1369259983025, 19900452349025, 289229603172625, 4203610924242625, 61094494859232625, 887935798190222625
Offset: 0
Links
- Alexander Samokrutov, Table of n, a(n) for n = 0..22
- Alexander Samokrutov, Coefficients k1, k2, k3, k4, k5
- Index entries for linear recurrences with constant coefficients, signature (25,-200,800,-1600,1280).
Programs
-
Magma
[n le 5 select 1 else 25*Self(n-1)-200*Self(n-2)+800*Self(n-3)-1600*Self(n-4)+1280*Self(n-5): n in [1..30]]; // Vincenzo Librandi, Nov 19 2014
-
Mathematica
CoefficientList[Series[(976 x^4 - 624 x^3 + 176 x^2 - 24 x + 1) / (-1280 x^5 + 1600 x^4 - 800 x^3 + 200 x^2 - 25 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 19 2014 *)
-
PARI
Vec( (976*x^4 - 624*x^3 + 176*x^2 - 24*x + 1)/(-1280*x^5 + 1600*x^4 - 800*x^3 + 200*x^2 - 25*x + 1) + O(x^66) ) \\ Joerg Arndt, Sep 14 2014
Formula
a(n) = 25*a(n-1)-200*a(n-2)+800*a(n-3)-1600*a(n-4)+1280*a(n-5).
G.f.: (976*x^4 - 624*x^3 + 176*x^2 - 24*x + 1)/(-1280*x^5 + 1600*x^4 - 800*x^3 + 200*x^2 - 25*x + 1).
Comments