A255983 a(n) = 1 for n <= 5; a(n) = 36*a(n-1) - 450*a(n-2) + 3000*a(n-3) - 11250*a(n-4) + 22500*a(n-5) - 18750*a(n-6) otherwise.
1, 1, 1, 1, 1, 1, -4914, -181854, -4339944, -89153184, -1746815574, -33850986114, -655203251304, -12686085675144, -245683477042884, -4758284508073524, -92156792465163564, -1784855834560787004, -34568319709081645344, -669504074781304567584, -12966661247726595160224
Offset: 0
Links
- Alexander Samokrutov, Table of n, a(n) for n = 0..25
- Alexander Samokrutov, Coefficients k1, k2, k3, k4, k5, k6
- Index entries for linear recurrences with constant coefficients, signature (36,-450,3000,-11250,22500,-18750).
Programs
-
Magma
[n le 6 select 1 else 36*Self(n-1)-450*Self(n-2)+3000*Self(n-3)-11250*Self(n-4)+22500*Self(n-5)-18750*Self(n-6): n in [1..30]]; // Vincenzo Librandi, Mar 21 2015
-
Mathematica
LinearRecurrence[{36, -450, 3000, -11250, 22500, -18750}, {1, 1, 1, 1, 1, 1}, 30] (* Vincenzo Librandi, Mar 21 2015 *)
-
PARI
Vec(-(13835*x^5-8665*x^4+2585*x^3-415*x^2+35*x-1) / (18750*x^6-22500*x^5+11250*x^4-3000*x^3+450*x^2-36*x+1) + O(x^100)) \\ Colin Barker, Mar 23 2015
Formula
a(n) = 36*a(n-1) - 450*a(n-2) + 3000*a(n-3) - 11250*a(n-4) + 22500*a(n-5) - 18750*a(n-6).
G.f.: -(13835*x^5-8665*x^4+2585*x^3-415*x^2+35*x-1) / (18750*x^6-22500*x^5+11250*x^4-3000*x^3+450*x^2-36*x+1). - Colin Barker, Mar 23 2015
Comments