A247347 Primes p such that (p-k)/(k+1) is also prime for k = 1, 2, 3.
11, 23, 719, 1439, 5639, 25799, 28319, 35879, 56039, 58679, 77279, 98999, 104759, 121559, 166919, 174599, 206639, 253679, 334319, 350159, 424079, 433439, 451679, 452759, 535919, 539159, 582719, 595319, 645839, 671039, 743279, 818999, 824039
Offset: 1
Keywords
Examples
a(1) = 11 because 11, (11-1)/2 = 5, (11-2)/3 = 3 and (11-3)/4 = 2 are all primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..45 from Jean-Christophe Hervé)
Crossrefs
Programs
-
Mathematica
lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)/2]&&PrimeQ[(p-2)/3]&&PrimeQ[(p-3)/ 4], AppendTo[lst, p]], {n, 2*9!}]; lst Select[Prime[Range[70000]],AllTrue[Table[(#-k)/(k+1),{k,3}],PrimeQ]&] (* Harvey P. Dale, Mar 09 2024 *)
-
PARI
isokp(v) = (type(v) == "t_INT") && isprime(v); lista(nn) = {forprime(p=2, nn, if (isokp((p-1)/2) && isokp((p-2)/3) && isokp((p-3)/4), print1(p, ", ")););} \\ Michel Marcus, Sep 15 2014
Comments