cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247365 Central terms of triangles A102472 and A102473.

Original entry on oeis.org

1, 2, 13, 130, 1807, 32280, 705421, 18237164, 544505521, 18438430990, 698246022001, 29239344782022, 1341545985079903, 66926098621724300, 3606825675219961657, 208826700420103831480, 12926842112341879416001, 851962999949978920707834, 59561112879709434549509941
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 14 2014

Keywords

Crossrefs

Programs

  • Haskell
    a247365 n = a102473 (2 * n - 1) n
  • Maple
    seq(round(2*BesselI(n-1,2)*BesselK(2*n-1,2)), n=1..30); # Mark van Hoeij, Nov 08 2022
    A001040 := proc(n) options remember;
      if n < 2 then n else (n - 1)*procname(n-1) + procname(n-2) fi
    end:
    A001053 := proc(n) options remember;
      if n < 2 then 1-n else (n - 1)*procname(n-1) + procname(n-2) fi
    end:
    seq( (-1)^n * (A001040(n-1) * A001053(2*n-1) - A001053(n-1) * A001040(2*n-1)), n=1..30); # Mark van Hoeij, Jul 10 2024
  • Mathematica
    Table[DifferenceRoot[Function[{y,m},{y[2+m]==(m+n)y[1+m]+y[m],y[0]==0,y[1]==1}]][n],{n,1,20}] (* Benedict W. J. Irwin, Nov 03 2016 *)

Formula

a(n) = A102472(2*n-1,n) = A102473(2*n-1,n).
a(n) = y(n,n), where y(m+2,n) = (m + n)*y(m+1,n) + y(m,n), with y(0,n)=0, y(1,n)=1 for all n. - Benedict W. J. Irwin, Nov 03 2016
a(n) = round(2*BesselI(n-1,2)*BesselK(2*n-1,2)). - Mark van Hoeij, Nov 08 2022
a(n) ~ 2^(2*n - 3/2) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 09 2022
a(n) = (-1)^n * (A001040(n-1) * A001053(2*n-1) - A001053(n-1) * A001040(2*n-1)). - Mark van Hoeij, Jul 10 2024