A247391 Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (1234567891011).
110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55, 110, 110, 110, 55, 22, 12, 11, 110, 55, 55, 55
Offset: 2
Links
- Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,1).
Programs
-
Magma
&cat[[110,55,55,55,110,110,110,55,22,12,11]: n in [0..10]];
-
Mathematica
CoefficientList[Series[(110 + 55 x + 55 x^2 + 55 x^3 + 110 x^4 + 110 x^5 + 110 x^6 + 55 x^7 + 22 x^8 + 12 x^9 + 11 x^10)/(1-x^11), {x, 0, 60}], x]
Formula
G.f.: x^2*(110 + 55*x + 55*x^2 + 55*x^3 + 110*x^4 + 110*x^5 + 110*x^6 + 55*x^7 + 22*x^8 + 12*x^9 + 11*x^10)/(1-x^11).
a(n) = (1283*m^10 - 64570*m^9 + 1396065*m^8 - 16960020*m^7 + 127065939*m^6 - 605936100*m^5 + 1828078285*m^4 - 3335483030*m^3 + 3289569228*m^2 - 1288120680*m + 5443200)/453600 where m = (n mod 11). - Luce ETIENNE, Nov 04 2018