cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247396 Number of even numbers in classes of classification of the positive numbers defined in comment in A247395.

Original entry on oeis.org

0, 1, 3, 8, 12, 36, 24, 60, 36, 84, 156, 60, 204, 156, 84, 180, 300, 336, 120, 384, 276, 144, 456, 324, 516, 744, 396, 204, 420, 216, 444, 1680, 516, 804, 276, 1440, 300, 924, 960, 660, 1020, 1056, 360, 1860, 384, 780, 396, 2460, 2604, 900, 456, 924, 1416, 480
Offset: 0

Views

Author

Vladimir Shevelev, Sep 16 2014

Keywords

Comments

In the classification every class contains no more than a finite number of numbers with a given least prime divisor.

Examples

			a(6) = (prime(6)^2 - prime(5)^2)/2 = (13^2 - 11^2)/2 = 24. - _Indranil Ghosh_, Mar 08 2017
		

Crossrefs

Programs

  • Maple
    A247396:=n->(ithprime(n)^2 - ithprime(n-1)^2)/2: 0,1,3,seq(A247396(n), n=3..100); # Wesley Ivan Hurt, Apr 18 2017
  • Mathematica
    a[0] = 0; a[1] = 1; a[2] = 3; a[n_] := (Prime[n]^2 - Prime[n - 1]^2) / 2; Table[a[n], {n, 0, 53}] (* Indranil Ghosh, Mar 08 2017 *)
  • PARI
    for(n=0, 53, print1(if(n>2, (prime(n)^2 - prime(n - 1)^2)/2, if(n<2, n, 3)),", ")) \\ Indranil Ghosh, Mar 08 2017

Formula

For n>=3, a(n) = (prime(n)^2 - prime(n-1)^2)/2.

Extensions

More terms from Peter J. C. Moses, Sep 17 2014