cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A247202 Smallest odd k > 1 such that k*2^n - 1 is a prime number.

Original entry on oeis.org

3, 3, 3, 3, 7, 3, 3, 5, 7, 5, 3, 5, 9, 5, 9, 17, 7, 3, 51, 17, 7, 33, 13, 39, 57, 11, 21, 27, 7, 213, 15, 5, 31, 3, 25, 17, 21, 3, 25, 107, 15, 33, 3, 35, 7, 23, 31, 5, 19, 11, 21, 65, 147, 5, 3, 33, 51, 77, 45, 17, 69, 53, 9, 3, 67, 63, 43, 63, 51, 27, 73, 5
Offset: 1

Views

Author

Pierre CAMI, Nov 25 2014

Keywords

Comments

Limit_{N->oo} (Sum_{n=1..N} a(n))/(Sum_{n=1..N} n) = log(2). [[Is there a proof or is this a conjecture? - Peter Luschny, Feb 06 2015]]
Records: 3, 7, 9, 17, 51, 57, 213, 255, 267, 321, 615, 651, 867, 901, 909, 1001, 1255, 1729, 1905, 2163, 3003, 3007, 3515, 3797, 3825, 4261, 4335, 5425, 5717, 6233, 6525, 6763, 11413, 11919, 12935, 20475, 20869, 25845, 30695, 31039, 31309, 42991, 55999, ... . - Robert G. Wilson v, Feb 08 2015

Crossrefs

Programs

  • Maple
    f:= proc(n)
    local k,p;
      p:= 2^n;
    for k from 3 by 2 do if isprime(k*p-1) then return k fi od;
    end proc:
    seq(f(n), n=1 .. 100); # Robert Israel, Feb 05 2015
  • Mathematica
    f[n_] := Block[{k = 3, p = 2^n}, While[ !PrimeQ[k*p - 1], k += 2]; k]; Array[f, 70]
  • PARI
    a(n) = {k=3; while (!isprime(k*2^n-1), k+=2); k;} \\ Michel Marcus, Nov 25 2014

Formula

a(A002235(n)) = 3.

A253398 Smallest odd k > 1 such that k*2^prime(n) + 1 is prime.

Original entry on oeis.org

3, 5, 3, 5, 9, 5, 9, 11, 45, 23, 35, 15, 3, 9, 27, 51, 27, 53, 9, 39, 23, 249, 51, 51, 131, 221, 29, 105, 321, 179, 5, 221, 111, 411, 191, 65, 83, 75, 95, 101, 147, 83, 149, 111, 203, 131, 9, 245, 281, 15, 83, 65, 299
Offset: 1

Views

Author

Pierre CAMI, Dec 31 2014

Keywords

Comments

For n < 1275, the ratio a(n)/prime(n) is always < 6 and on average ~0.7.
From Robert G. Wilson v, Jan 27 2015: (Start)
Records: 3, 5, 9, 11, 45, 51, 53, 249, 321, 411, 611, 1383, 1875, 2423, 4239, 4623, 6549, 7095, 8091, 9003, 10065, 10719, 18005, 18545, 19251, 21111, 25409, 39741, 49709, 54455, ..., .
a(n)=3 for n = 1, 3, 13, 71, ...;
a(n)=5 for n = 2, 4, 6, 31, 466, ...;
a(n)=9 for n = 5, 7, 14, 19, 47, 342, 1167, ...;
a(n)=11 for n = 8, ...; etc.
(End)

Examples

			3*2^2 + 1 = 13 (prime), so a(1)=3.
3*2^3 + 1 = 25 (composite), 5*2^3 + 1 = 41 (prime), so a(2)=5.
3*2^5 + 1 = 97 (prime), so a(3)=3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 3, p = 2^Prime@ n}, While[ !PrimeQ[ k*p + 1], k += 2]; k]; Array[f, 53] (* Robert G. Wilson v, Jan 25 2015 *)
  • PARI
    a(n)=k=1;while(!isprime((2*k+1)*2^prime(n)+1),k++);2*k+1
    vector(100,n,a(n)) \\ Derek Orr, Dec 31 2014

Formula

a(n) = A247479(p_n). - Robert G. Wilson v, Jan 27 2015

A263046 Smallest number k>2 such that k*2^n + 1 is a prime number.

Original entry on oeis.org

4, 3, 3, 5, 6, 3, 3, 5, 3, 15, 12, 6, 3, 5, 4, 5, 12, 6, 3, 11, 7, 11, 25, 20, 10, 5, 7, 15, 12, 6, 3, 35, 18, 9, 12, 6, 3, 15, 10, 5, 6, 3, 9, 9, 15, 35, 19, 27, 15, 14, 7, 14, 7, 20, 10, 5, 27, 29, 54, 27, 31, 36, 18, 9, 12, 6, 3, 9, 31, 23, 39, 39, 40, 20, 10, 5, 58
Offset: 0

Views

Author

Pierre CAMI, Oct 08 2015

Keywords

Comments

If k = 2^j then 2^(n+j) + 1 is a Fermat prime.
a(n) = 3 if and only if 3*2^n + 1 is a prime; that is, n belongs to A002253. - Altug Alkan, Oct 08 2015
a(n+1) >= ceiling(a(n)/2). If a(n) is even then a(n+1) = a(n)/2. - Robert Israel, Oct 08 2015

Examples

			3*2^1 + 1 = 7 (prime), so a(1)=3:
3*2^2 + 1 = 13 (prime), so a(2)=3;
3*2^3 + 1 = 25 (composite), 4*2^3 + 1 = 33 (composite), 5*2^3 - 1 = 41 (prime), so a(3)=5.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
        for k from 3 do if isprime(k*2^n+1) then return k fi od
      end proc:
    seq(f(n),n=1..100); # Robert Israel, Oct 08 2015
  • Mathematica
    Table[k = 3; While[! PrimeQ[k 2^n + 1], k++]; k, {n, 76}] (* Michael De Vlieger, Oct 08 2015 *)
  • PARI
    a(n) = {k=3; while (! isprime(k*2^n+1), k++); k;} \\ Michel Marcus, Oct 08 2015
Showing 1-3 of 3 results.