A247503 Completely multiplicative with a(prime(n)) = prime(n)^(n mod 2).
1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 11, 4, 1, 2, 5, 16, 17, 2, 1, 20, 1, 22, 23, 8, 25, 2, 1, 4, 1, 10, 31, 32, 11, 34, 5, 4, 1, 2, 1, 40, 41, 2, 1, 44, 5, 46, 47, 16, 1, 50, 17, 4, 1, 2, 55, 8, 1, 2, 59, 20, 1, 62, 1, 64, 5, 22, 67, 68, 23, 10, 1, 8, 73, 2, 25, 4
Offset: 1
Examples
Since 10 = 2*5, 2 = prime(1), and 5 = prime(3), a(10) = 2*5 = 10. Since 9 = 3^2 and 3 is an even-indexed prime, 3 = prime(2), then a(9) = 1^2 = 1. Since 30 = 2*3*5, 2 = prime(1), 3 = prime(2), and 5 = prime(3), we see that a(30) = 2*1*5 = 10.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index to divisibility sequences
Crossrefs
Programs
-
Haskell
a247503 = product . filter (odd . a049084) . a027746_row -- Reinhard Zumkeller, Mar 06 2015
-
Mathematica
f[n_] := Block[{a, g, pf = FactorInteger@ n}, a = PrimePi[First /@ pf]; g[x_] := If[EvenQ@ x, 1, Prime@ x]; Times @@ Power @@@ Transpose@ {g /@ a, Last /@ pf}]; Array[f, 120] (* Michael De Vlieger, Mar 03 2015 *) Array[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &, 76] (* Michael De Vlieger, Apr 05 2017 *)
-
PARI
a(n) = {f = factor(n); for (i=1, #f~, f[i,2] *= (primepi(f[i,1]) % 2);); factorback(f);} \\ Michel Marcus, Mar 03 2015
-
Python
from math import prod from sympy import factorint, primepi def A247503(n): return prod(p**e for p, e in factorint(n).items() if primepi(p)&1) # Chai Wah Wu, Dec 26 2022
-
Sage
n=100; oddIndexPrimes=[primes_first_n(2*n+1)[2*i] for i in [0..n]] [prod([(x[0]^(x[0] in oddIndexPrimes))^x[1] for x in factor(n)]) for n in [1..n]]
Comments