cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247503 Completely multiplicative with a(prime(n)) = prime(n)^(n mod 2).

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 11, 4, 1, 2, 5, 16, 17, 2, 1, 20, 1, 22, 23, 8, 25, 2, 1, 4, 1, 10, 31, 32, 11, 34, 5, 4, 1, 2, 1, 40, 41, 2, 1, 44, 5, 46, 47, 16, 1, 50, 17, 4, 1, 2, 55, 8, 1, 2, 59, 20, 1, 62, 1, 64, 5, 22, 67, 68, 23, 10, 1, 8, 73, 2, 25, 4
Offset: 1

Views

Author

Tom Edgar, Mar 03 2015

Keywords

Comments

To compute a(n) replace even-indexed primes in the prime factorization of n by 1.
a(p) = p if p is in A031368.
a(p) = 1 if p is in A031215.

Examples

			Since 10 = 2*5, 2 = prime(1), and 5 = prime(3), a(10) = 2*5 = 10.
Since 9 = 3^2 and 3 is an even-indexed prime, 3 = prime(2), then a(9) = 1^2 = 1.
Since 30 = 2*3*5, 2 = prime(1), 3 = prime(2), and 5 = prime(3), we see that a(30) = 2*1*5 = 10.
		

Crossrefs

First 28 terms are the same as A343430.

Programs

  • Haskell
    a247503 = product . filter (odd . a049084) . a027746_row
    -- Reinhard Zumkeller, Mar 06 2015
    
  • Mathematica
    f[n_] := Block[{a, g, pf = FactorInteger@ n}, a = PrimePi[First /@ pf]; g[x_] := If[EvenQ@ x, 1, Prime@ x]; Times @@ Power @@@ Transpose@ {g /@ a, Last /@ pf}]; Array[f, 120] (* Michael De Vlieger, Mar 03 2015 *)
    Array[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &, 76] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, f[i,2] *= (primepi(f[i,1]) % 2);); factorback(f);} \\ Michel Marcus, Mar 03 2015
    
  • Python
    from math import prod
    from sympy import factorint, primepi
    def A247503(n): return prod(p**e for p, e in factorint(n).items() if primepi(p)&1) # Chai Wah Wu, Dec 26 2022
  • Sage
    n=100; oddIndexPrimes=[primes_first_n(2*n+1)[2*i] for i in [0..n]]
    [prod([(x[0]^(x[0] in oddIndexPrimes))^x[1] for x in factor(n)]) for n in [1..n]]
    

Formula

When n = Product_{k>=1} prime(k)^r_k, a(n) = Product_{k>=1} prime(k)^(r_k*(k mod 2)).
a(n) = n/A248101(n).
a(n) = Product_{k = 1..A001222(n)} A027746(n,k) and A049084(A027746(n,k)) is odd). - Reinhard Zumkeller, Mar 06 2015