A247672 Least integer m > 0 with pi(m*n) = phi(m) + phi(n), where pi(.) is the prime-counting function and phi(.) is Euler's totient function.
6, 2, 2, 23, 3, 1, 3, 1033, 2, 6449, 15887, 1, 100169, 268393, 636917, 2113589, 70324093, 1, 27852457, 78848479, 2, 468329417, 4, 1, 10220118551
Offset: 1
Examples
a(1) = 6 since pi(6) = 3 = phi(1) + phi(6), and pi(1*m) = phi(1) + phi(m) for no m < 6.
Links
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685 [math.NT], 2014-2017.
Programs
-
Mathematica
Table[m = 1; While[PrimePi[n*m] != EulerPhi[m] + EulerPhi[n], m++]; m, {n, 1, 12}] (* Robert Price, Sep 08 2019 *)
-
Perl
use ntheory ":all"; for my $n (1..16) { my $m=1; $m++ until (prime_count($m*$n) == euler_phi($m) + euler_phi($n)); say "$n $m"; } # Dana Jacobsen, Mar 07 2023
Extensions
a(19)-a(25) from Hiroaki Yamanouchi, Oct 04 2014
Comments