A247687 Numbers m with the property that the symmetric representation of sigma(m) has three parts of width one.
9, 25, 49, 50, 98, 121, 169, 242, 289, 338, 361, 484, 529, 578, 676, 722, 841, 961, 1058, 1156, 1369, 1444, 1681, 1682, 1849, 1922, 2116, 2209, 2312, 2738, 2809, 2888, 3362, 3364, 3481, 3698, 3721, 3844, 4232, 4418, 4489, 5041, 5329, 5476, 5618, 6241, 6724, 6728, 6889, 6962, 7396, 7442, 7688, 7921, 8836, 8978, 9409
Offset: 1
Keywords
Examples
We show portions of the first eight columns, powers of two 0 <= k <= 7, and 55 rows of the triangle through prime(56) = 263. p/k 0 1 2 3 4 5 6 7 3 9 5 25 50 7 49 98 11 121 242 484 13 169 338 676 17 289 578 1156 2312 19 361 722 1444 2888 23 529 1058 2116 4232 29 841 1682 3364 6728 31 961 1922 3844 7688 37 1369 2738 5476 10952 21904 41 1681 3362 6724 13448 26896 43 1849 3698 7396 14792 29584 47 2209 4418 8836 17672 35344 53 2809 5618 11236 22472 44944 59 3481 6962 13924 27848 55696 61 3721 7442 14884 29768 59536 67 4489 8978 17956 35912 71824 143648 71 5041 10082 20164 40328 80656 161312 . . . . . . . . . . . . . . 131 17161 34322 68644 137288 274567 549152 1098304 137 18769 37538 75076 150152 300304 600608 1201216 . . . . . . . . . . . . . . . . 257 66049 132098 264196 528392 1056784 2113568 4227136 8454272 263 69169 138338 276676 553352 1106704 2213408 4426816 8853632 Number 4 is not in this sequence since the symmetric representation of sigma(4) consists of a single region. Column k=0 contains the squares of primes (A001248(n), n>=2), column k=1 contains double the squares of primes (A079704(n), n>=2) and column k=2 contains four times the squares of primes (A069262(n), n>=5).
Links
- Hartmut F. W. Hoft, Three regions width one - triangle formula proof
Crossrefs
Programs
-
Mathematica
(* path[n] and a237270[n] are defined in A237270 *) atmostOneDiagonalsQ[n_] := SubsetQ[{0, 1}, Union[Flatten[Drop[Drop[path[n], 1], -1] - path[n-1], 1]]] (* data *) Select[Range[10000], atmostOneDiagonalsQ[#] && Length[a237270[#]]==3 &] (* expression for the triangle in the Example section *) TableForm[Table[2^k Prime[n]^2, {n, 2, 57}, {k, 0, Floor[Log[2, Prime[n]] - 1]}], TableDepth -> 2, TableHeadings -> {Map[Prime, Range[2, 57]], Range[0, Floor[Log[2, Prime[57] - 1]]]}]
Formula
As an irregular triangle, T(n, k) = 2^k * prime(n)^2 where n >= 2 and 0 <= k <= floor(log_2(prime(n)) - 1).
Comments