cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247698 Brady numbers: B(n) = B(n - 1) + B(n - 2) with B(1) = 2308 and B(2) = 4261.

Original entry on oeis.org

2308, 4261, 6569, 10830, 17399, 28229, 45628, 73857, 119485, 193342, 312827, 506169, 818996, 1325165, 2144161, 3469326, 5613487, 9082813, 14696300, 23779113, 38475413, 62254526, 100729939, 162984465, 263714404, 426698869, 690413273, 1117112142, 1807525415, 2924637557, 4732162972, 7656800529
Offset: 1

Views

Author

Sebastian Zimmer, Sep 22 2014

Keywords

Comments

B(n) / B(n - 1) approaches the golden ratio as n approaches infinity.

Programs

  • Haskell
    brady = let makeSeq a b = a : makeSeq b (a + b) in makeSeq 2308 4261
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(2308+1953*x)/(1-x-x^2))); // G. C. Greubel, Sep 07 2018
    
  • Maple
    Brady1 := proc(n::posint)
    option remember, system;
    if n = 1 then
      2308
    elif n = 2 then
      4261
    else
      thisproc( n - 1 ) + thisproc( n - 2 )
    end if
    end proc:
    seq( Brady1( n ), n = 1 .. 100 );
    # James McCarron, Oct 05 2019
    # alternate program
    Brady2 := ( n :: posint ) -> coeff( series(x*(2308+1953*x)/(1-x-x^2),x,n+1), x^n ):
    seq( Brady2( n ), n = 1 .. 100 );
    # James McCarron, Oct 05 2019
  • Mathematica
    LinearRecurrence[{1, 1}, {2308, 4261}, n]
    Rest[CoefficientList[Series[x*(2308+1953*x)/(1-x-x^2), {x,0,50}], x]] (* G. C. Greubel, Sep 07 2018 *)
  • PARI
    Vec(-x*(1953*x+2308)/(x^2+x-1) + O(x^50)) \\ Colin Barker, Sep 23 2014
    
  • PARI
    a(n)=([1,1;1,0]^n*[1953;355])[1,1] \\ Charles R Greathouse IV, Jan 20 2016
    
  • Python
    def A247698_list(n):
        list = [2308, 4261] + [0] * (n - 2)
        for i in range(2, n):
            list[i] = list[i - 1] + list[i - 2]
        return list
    print(A247698_list(32)) # M. Eren Kesim, Jun 28 2021

Formula

a(n) = a(n-1) + a(n-2).
G.f.: x*(2308 + 1953*x) / (1-x-x^2). - Colin Barker, Sep 23 2014
a(n) = k*phi^n + o(1), where k = 976.5 + sqrt(354578.45) = 1571.96.... - Charles R Greathouse IV, Sep 28 2014
a(n) = 2308*A000045(n-2) + 4261*A000045(n-1) = 1953*A000045(n+1) + 355*A000045(n). - M. F. Hasler, May 10 2017
a(n) = F(n+17) - F(n+8) - 9*F(n) - F(n-14) for F(n) = A000045(n). - Greg Dresden, Jul 07 2022