A247765 Table of denominators in the Egyptian fraction representation of n/(n+1) by the greedy algorithm.
2, 2, 6, 2, 4, 2, 4, 20, 2, 3, 2, 3, 42, 2, 3, 24, 2, 3, 18, 2, 3, 15, 2, 3, 14, 231, 2, 3, 12, 2, 3, 12, 156, 2, 3, 11, 231, 2, 3, 10, 2, 3, 10, 240, 2, 3, 10, 128, 32640, 2, 3, 9, 2, 3, 9, 342, 2, 3, 9, 180, 2, 3, 9, 126, 2, 3, 9, 99, 2, 3, 9, 83, 34362
Offset: 1
Examples
. 1: 2 . 2: 2, 6 . 3: 2, 4 . 4: 2, 4, 20 . 5: 2, 3 . 6: 2, 3, 42 . 7: 2, 3, 24 . 8: 2, 3, 18 . 9: 2, 3, 15 . 10: 2, 3, 14, 231 . 11: 2, 3, 12 . 12: 2, 3, 12, 156 . 13: 2, 3, 11, 231 . 14: 2, 3, 10 . 15: 2, 3, 10, 240 . 16: 2, 3, 10, 128, 32640 . 17: 2, 3, 9 . 18: 2, 3, 9, 342 . 19: 2, 3, 9, 180 . 20: 2, 3, 9, 126
Links
- Seiichi Manyama, Rows n = 1..1000 of triangle, flattened (Rows n = 1..100 from Reinhard Zumkeller)
Programs
-
Haskell
import Data.Ratio ((%), numerator, denominator) a247765 n k = a247765_tabf !! (n-1) !! (k-1) a247765_tabf = map a247765_row [1..] a247765_row n = f (map recip [2..]) (n % (n + 1)) where f es x | numerator x == 1 = [denominator x] | otherwise = g es where g (u:us) | u <= x = (denominator u) : f us (x - u) | otherwise = g us
Comments