cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A100678 Number of Egyptian fractions in the representation of n/(n+1) via the greedy algorithm.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 3, 4, 5, 3, 4, 4, 4, 4, 5, 3, 4, 4, 4, 4, 5, 4, 6, 4, 4, 5, 5, 4, 5, 5, 5, 4, 5, 3, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 4, 5, 4, 5, 5, 5, 4, 5, 6, 4, 5, 5, 5, 6, 5, 5, 4, 6, 5, 5, 5, 5, 5, 5, 4, 5, 6, 6, 5, 6, 4, 5, 6, 5, 6, 6, 5, 4, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Pahikkala Jussi, Dec 06 2004

Keywords

Comments

a(n) = length of n-th row in table A247765. - Reinhard Zumkeller, Sep 25 2014

Examples

			a(16) = 5 because 16/17 = 1/2 + 1/3 + 1/10 + 1/128 + 1/32640.
		

Crossrefs

Cf. A100695.
Cf. A247765.

Programs

Extensions

More terms from M. F. Hasler, Sep 25 2014

A100695 Largest denominator used in the Egyptian fraction representation of n/(n + 1) by the greedy algorithm.

Original entry on oeis.org

2, 6, 4, 20, 3, 42, 24, 18, 15, 231, 12, 156, 231, 10, 240, 32640, 9, 342, 180, 126, 99, 34362, 8, 600, 312, 216, 168, 24360, 120, 633759288, 96, 88, 16728, 9240, 72, 6808, 5016, 6552, 60, 28536, 7, 1806, 924, 630, 483, 779730, 336, 294, 138075, 238, 79716
Offset: 1

Views

Author

John W. Layman, Dec 08 2004

Keywords

Comments

a(n) = A247765(n,A100678(n)). - Reinhard Zumkeller, Sep 25 2014

Examples

			a(16) = 32640 because 16/17 = 1/2 + 1/3 + 1/10 + 1/128 + 1/32640.
		

Crossrefs

Cf. A100678.
Cf. A247765.

Programs

  • Haskell
    a100695 = last . a247765_row -- Reinhard Zumkeller, Sep 25 2014
  • Mathematica
    a[n_] := Module[{m = n/(n+1)}, While[Numerator[m]>1, m = m-1/Ceiling[1/m]]; 1/m]; Array[a, 100] (* Jean-François Alcover, Mar 12 2019, after M. F. Hasler *)
  • PARI
    a(n)={n/=(n+1);while(numerator(n)>1,n-=1/ceil(1/n));1/n} \\ M. F. Hasler, Sep 24 2014
    
Showing 1-2 of 2 results.