cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228136 Numbers that give records of A100678.

Original entry on oeis.org

1, 2, 4, 10, 16, 30, 103, 210, 261, 1625, 3081, 6693, 32697, 155165, 262546, 697924, 760750, 1081782, 5547049, 14637837, 18044997
Offset: 1

Views

Author

Michel Marcus, Aug 12 2013

Keywords

Comments

a(22) > 10^8. - Hiroaki Yamanouchi, Sep 27 2014

Crossrefs

Cf. A100678.

Extensions

a(20)-a(21) from Hiroaki Yamanouchi, Sep 27 2014

A100695 Largest denominator used in the Egyptian fraction representation of n/(n + 1) by the greedy algorithm.

Original entry on oeis.org

2, 6, 4, 20, 3, 42, 24, 18, 15, 231, 12, 156, 231, 10, 240, 32640, 9, 342, 180, 126, 99, 34362, 8, 600, 312, 216, 168, 24360, 120, 633759288, 96, 88, 16728, 9240, 72, 6808, 5016, 6552, 60, 28536, 7, 1806, 924, 630, 483, 779730, 336, 294, 138075, 238, 79716
Offset: 1

Views

Author

John W. Layman, Dec 08 2004

Keywords

Comments

a(n) = A247765(n,A100678(n)). - Reinhard Zumkeller, Sep 25 2014

Examples

			a(16) = 32640 because 16/17 = 1/2 + 1/3 + 1/10 + 1/128 + 1/32640.
		

Crossrefs

Cf. A100678.
Cf. A247765.

Programs

  • Haskell
    a100695 = last . a247765_row -- Reinhard Zumkeller, Sep 25 2014
  • Mathematica
    a[n_] := Module[{m = n/(n+1)}, While[Numerator[m]>1, m = m-1/Ceiling[1/m]]; 1/m]; Array[a, 100] (* Jean-François Alcover, Mar 12 2019, after M. F. Hasler *)
  • PARI
    a(n)={n/=(n+1);while(numerator(n)>1,n-=1/ceil(1/n));1/n} \\ M. F. Hasler, Sep 24 2014
    

A247765 Table of denominators in the Egyptian fraction representation of n/(n+1) by the greedy algorithm.

Original entry on oeis.org

2, 2, 6, 2, 4, 2, 4, 20, 2, 3, 2, 3, 42, 2, 3, 24, 2, 3, 18, 2, 3, 15, 2, 3, 14, 231, 2, 3, 12, 2, 3, 12, 156, 2, 3, 11, 231, 2, 3, 10, 2, 3, 10, 240, 2, 3, 10, 128, 32640, 2, 3, 9, 2, 3, 9, 342, 2, 3, 9, 180, 2, 3, 9, 126, 2, 3, 9, 99, 2, 3, 9, 83, 34362
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 25 2014

Keywords

Comments

A100678(n) = length of n-th row;
T(n, A100678(n)) = A100695(n).

Examples

			.   1:  2
.   2:  2, 6
.   3:  2, 4
.   4:  2, 4, 20
.   5:  2, 3
.   6:  2, 3, 42
.   7:  2, 3, 24
.   8:  2, 3, 18
.   9:  2, 3, 15
.  10:  2, 3, 14, 231
.  11:  2, 3, 12
.  12:  2, 3, 12, 156
.  13:  2, 3, 11, 231
.  14:  2, 3, 10
.  15:  2, 3, 10, 240
.  16:  2, 3, 10, 128, 32640
.  17:  2, 3,  9
.  18:  2, 3,  9, 342
.  19:  2, 3,  9, 180
.  20:  2, 3,  9, 126
		

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator, denominator)
    a247765 n k = a247765_tabf !! (n-1) !! (k-1)
    a247765_tabf = map a247765_row [1..]
    a247765_row n = f (map recip [2..]) (n % (n + 1)) where
       f es x | numerator x == 1 = [denominator x]
              | otherwise        = g es
              where g (u:us) | u <= x    = (denominator u) : f us (x - u)
                             | otherwise =  g us

A286720 Number of Egyptian fractions in the representation of 1-1/(2n+1) by the odd greedy expansion algorithm, without repeats.

Original entry on oeis.org

4, 6, 6, 4, 6, 6, 4, 6, 6, 6, 8, 6, 6, 10, 6, 6, 8, 6, 12, 10, 10, 4, 6, 6, 6, 8, 6, 6, 8, 10, 6, 6, 8, 8, 6, 10, 6, 8, 6, 8, 6, 10, 6, 10, 6, 10, 6, 10, 6, 8, 8, 6, 8, 8, 8, 6, 6, 6, 10, 8, 6, 8, 10, 12, 8, 10, 6, 8, 8, 8, 10, 8, 6, 8, 10, 6, 8, 8, 6, 6, 8
Offset: 1

Views

Author

Amiram Eldar, May 30 2017

Keywords

Comments

The odd version of A100678.

Examples

			For n = 1, 1-1/(2n+1) = 2/3 = 1/3 + 1/5 + 1/9 + 1/45 has 4 fractions in the representation, thus a(1) = 4.
		

Crossrefs

Cf. A100678.

Programs

  • Mathematica
    odd[n_]:=If[OddQ[n],n,n+1];a={};For[n=0,n<100,n++;lst={};k=2n/(2n+1);s1=0; While[k>0,s2=odd[Ceiling[1/k]]; If[s2==s1,s2+=2]; AppendTo[lst, s2]; k=k-1/s2; s1=s2];a=AppendTo[a,Length[lst]]];a

A287636 Indices of records in A100695.

Original entry on oeis.org

1, 2, 4, 6, 10, 15, 16, 22, 30, 66, 70, 103, 210, 261, 1118, 1625, 2815, 3081, 3088, 6693, 18390, 18762, 32697, 59860, 71355, 155165, 198033, 208790, 262546, 266403, 673708, 697924, 699690, 760750, 1081782, 2993838, 4449916, 4672993, 4692381, 5547049, 6068616
Offset: 1

Views

Author

Amiram Eldar, May 28 2017

Keywords

Comments

The corresponding denominators are 2, 6, 20, 42, 231, 240, 32640, 34362, 633759288, 1532037276, 4716994695, 100039636784966424, ... The denominator that corresponds to a(45) has 878175 digits.

Crossrefs

Programs

  • Mathematica
    a={};dmax=0;n=1;While[Length[a]<40,denom=0; k=n/(n+1); While[ k>0,denom=Ceiling[1/k]; k=k-1/denom]; If[denom>dmax,dmax=denom;a=AppendTo[a,n]];n++];a
Showing 1-5 of 5 results.